PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption Behavior of Glucuronic Acid on Pyrite Surface: an electrochemical and DFT Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bacterial adsorption on mineral surface is one of the key steps in bioleaching process. The bacteria adsorb on the mineral surface via the extracellular polymeric substances (EPS) layer. In this paper, the behavior of glucuronic acid, one of the key substances in EPS layer, adsorbed on the pyrite surface is studied using DFT and electrochemical methods. Adsorption capacity of glucuronic acid is stronger than that of water. Glucuronic acid adsorbs on pyrite surfaces and it follows a mixed type of interactions (physisorption and chemisorption). Adsorption of glucuronic acid on pyrite surface followed Langmuir’s adsorption isotherm with adsorption standard free energy of –27.67kJ mol-1. The structural and electronic parameters were calculated and discussed.
Słowa kluczowe
Twórcy
autor
  • School of Metallurgy, Northeastern University, No. 3-11, Wenhua Road, Heping District, Shenyang, P.R. China
  • School of Metallurgy, Northeastern University, No. 3-11, Wenhua Road, Heping District, Shenyang, P.R. China
autor
  • School of Metallurgy, Northeastern University, No. 3-11, Wenhua Road, Heping District, Shenyang, P.R. China
Bibliografia
  • [1] T. Gu, S. O. Rastegar, S. M. Mousavi, M. Li, M. Zhou, Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge, Bioresource Technol. 261, 428-440 (2018).
  • [2] S. Ghosh, S. Mohanty, A. Akcil, L. B. Sukla, A. P. Das, A greener approach for resource recycling: Manganese bioleaching, Chemosphere 154, 628-639 (2016).
  • [3] Y. Konishi, S. Asai, M. Tokushige, T. Suzuki, Bioleaching of chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi, Biotechnol. Progr. 15, 681-688 (2010).
  • [4] T.-J. Peng, Z. Dan, X.-D. Liu, R.-L. Yu, T. Jiang, G.-H. Gu, C. Miao, G.-Z. Qiu, W.-M. Zeng, Enrichment of ferric iron on mineral surface during bioleaching of chalcopyrite, T. Nonferr. Metal. Soc. 26, 544-550 (2016).
  • [5] L. Ma, X. Wang, X. Liu, S. Wang, H. Wang, Intensified bioleaching of chalcopyrite by communities with enriched ferrous or sulfur oxidizers, Bioresource Technol. 268, 415-423 (2018).
  • [6] D. Shin, J. Jeong, S. Lee, B. D. Pandey, J. C. Lee, Evaluation of bioleaching factors on gold recovery from ore by cyanide-producing bacteria, Miner. Eng. 48, 20-24 (2013).
  • [7] J.-L. Xia, J. J. Song, H.-C. Liu, Z.-Y. Nie, L. Shen, P. Yuan, C.-Y. Ma, L. Zheng, Y.-D. Zhao, Study on catalytic mechanism of silver ions in bioleaching of chalcopyrite by SR-XRD and XANES, Hydrometallurgy 180, 26-35 (2018).
  • [8] J. V. Mehrabani, S. Z. Shafaei, M. Noaparast, S. M. Mousavi, Bioleaching of high pyrite carbon-rich sphalerite preflotation tailings, Environ. Earth. Sci. 71, 4675-4682 (2014).
  • [9] Y. Huai, C. Plackowski, Y. Peng, The surface properties of pyrite coupled with gold in the presence of oxygen, Miner. Eng. 111, 131-139 (2017).
  • [10] C. Lü, Y. Wang, P. Qian, Y. Liu, G. Fu, J. Ding, S. Ye, Y. Chen, Separation of chalcopyrite and pyrite from a copper tailing by ammonium humate, Chinese. J. Chem. Eng. 26, 1814-1821 (2018).
  • [11] M. Ejtemaei, A. V. Nguyen, Characterisation of sphalerite and pyrite surfaces activated by copper sulphate, Miner. Eng. 100, 223-232 (2017).
  • [12] Y. Huai, C. Plackowski, Y. Peng, The galvanic interaction between gold and pyrite in the presence of ferric ions, Miner. Eng. 119, 236-243 (2018).
  • [13] F. Estrada-de los Santos, R. Rivera-Santillán, M. Talavera-Ortega, F. Bautista, Catalytic and galvanic effects of pyrite on ferric leaching of sphalerite, Hydrometallurgy 163, 167-175 (2016).
  • [14] Y. Morishita, N. Shimada, K. Shimada, Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: Significance of variation and distribution of Au/As ratios in pyrite, Ore. Geol. Rev. 95, 79-93 (2018).
  • [15] E. Bidari, V. Aghazadeh, Pyrite from Zarshuran Carlin-type gold deposit: Characterization, alkaline oxidation pretreatment, and cyanidation, Hydrometallurgy 179, 222-231 (2018).
  • [16] W. Sand, T. Gehrke, Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria, Res. Microbiol. 157, 49-56 (2006).
  • [17] J. N. Xu, H. Y. Yang, Electrochemical Research on N-Type and P-Type Semiconductor Pyrite, Adv. Mater. Res. 1130, 179-182 (2015).
  • [18] S. Barahona, C. Dorador, R. Zhang, P. Aguilar, W. Sand, M. Vera, F. Remonsellez, Isolation and characterization of a novel Acidithiobacillus ferrivorans strain from the Chilean Altiplano: attachment and biofilm formation on pyrite at low temperature, Res. Microbiol 165, 782-793 (2014).
  • [19] S. Bellenberg, M. Díaz, N. Noël, W. Sand, A. Poetsch, N. Guiliani, M. Vera, Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces, Res. Microbiol. 165, 773-781 (2014).
  • [20] T. Gehrke, J. Telegdi, D. Thierry, W. Sand, Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching, Appl. Environ. Microbiol. 64, 2743-2747 (1998).
  • [21] L. X. Yan, W. D. Zhou, Z. L. Xi, Function of Bacterial Attachment on the Pre-Biooxidation of Arsenic-Bearing Gold Concentrate, Journal of Northeastern University 21, 641-644 (2000).
  • [22] B. Florian, N. Noël, W. Sand, S. T. L. Harrison, J. Petersen, R. P. V. Hille, Visualization of initial attachment of bioleaching bacteria using combined atomic force and epifluorescence microscopy, Miner. Eng. 23, 532-535 (2010).
  • [23] H. E. Zhi-Guo, Y. P. Yang, S. Zhou, H. U. Yue-Hua, H. Zhong, Effect of pyrite, elemental sulfur and ferrous ions on EPS production by metal sulfide bioleaching microbes, T. Nonferr. Metal. Soc. 24, 1171-1178 (2014).
  • [24] Q. Li, W. Sand, Mechanical and chemical studies on EPS from Sulfobacillus thermosulfidooxidans: from planktonic to biofilm cells, Colloids & Surfaces B Biointerfaces 153, 34-40 (2017).
  • [25] C. A. Jerez, Bioleaching and Biomining for the Industrial Recovery of Metals, 2017, Elsevier, Chile.
  • [26] Z. Wang, X. Xie, S. Xiao, J. Liu, Adsorption behavior of glucose on pyrite surface investigated by TG, FTIR and XRD analyses, Hydrometallurgy 102, 87-90 (2010).
  • [27] J. Zhu, Q. Li, W. Jiao, H. Jiang, W. Sand, J. Xia, X. Liu, W. Qin, G. Qiu, Y. Hu, Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite, Colloids & Surfaces B Biointerfaces 94, 95 (2012).
  • [28] R. Zhang, S. Bellenberg, L. Castro, T. R. Neu, W. Sand, M. Vera, Colonization and biofilm formation of the extremely acidophilicarchaeon Ferroplasma acidiphilum, Hydrometallurgy 150, 245-252 (2014).
  • [29] Q. Li, W. Sand, R. Zhang, Enhancement of Biofilm Formationon Pyrite by Sulfobacillus thermosulfidooxidans, Minerals 6, 71 (2016).
  • [30] S. Bellenberg, C. F. Leon-Morales, W. Sand, M. Vera, Visualization of capsular polysaccharide induction in Acidithiobacillus ferrooxidans, Hydrometallurgy 129-130, 82-89 (2012).
  • [31] W. Sand, T. Gehrke, Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria, Res. Microbiol. 157, 49 (2006).
  • [32] K. Harneit, A. Göksel, D. Kock, J. H. Klock, T. Gehrke, W. Sand, Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans, Hydrometallurgy 83, 245-254 (2006).
  • [33] Q. Liu, Y. Zhang, J. S. Laskowski, The adsorption of polysaccharides onto mineral surfaces: an acid/base interaction, Int. J. Miner. Process. 60, 229-245 (2000).
  • [34] E. Bogusz, S. R. Brienne, I. Butler, S. R. Rao, J. A. Finch, Metal ions and dextrin adsorption on pyrite, Miner. Eng. 10, 441-445 (1997).
  • [35] Y. Li, Q. Liu, Adsorption behaviour and interaction mechanisms of dextrin on oxidative mineral surface, T. Nonferr. Metal. Soc. 6, 30-33 (1996).
  • [36] B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 113, 7756-7764 (2000)
  • [37] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77, 3865-3868 (1996).
  • [38] Y. Xian, Y. Wang, S. Wen, Q. Nie, J. Deng, Floatability and oxidation of pyrite with different spatial symmetry, Miner. Eng. 72, 94-100 (2015).
  • [39] T. Arslan, F. Kandemirli, E. E. Ebenso, I. Love, H. Alemu, Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium, Corros. Sci. 51, 35-47 (2009).
  • [40] J. Cruz, R. Martı́Nez, J. Genesca, E. Garcı́A-Ochoa, Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media, J. Electroanal. Chem. 566, 111-121 (2004).
  • [41] H. Ju, Z. P. Kai, Y. Li, Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media: A quantum chemical calculation, Corros. Sci. 50, 865-871 (2008).
  • [42] G. Gao, C. Liang, Electrochemical and DFT studies of β-amino-alcohols as corrosion inhibitors for brass, Electrochim. Acta 52, 4554-4559 (2007).
  • [43] I. B. Obot, N. O. Obi-Egbedi, Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors, Corros. Sci. 52, 657-660 (2010).
  • [44] S. Khalid, M. A. Malik, D. J. Lewis, P. Kevin, E. Ahmed, Y. Khan, P. O’Brien, Transition Metal Doped Pyrite (FeS2) Thin Films: Structural Properties and Evaluation of Optical Band Gap Energies, Journal of Materials Chemistry C 3, 12068-12076 (2015).
  • [45] J. Hu, Y. Zhang, M. Law, R. Wu, Increasing the Band Gap of Iron Pyrite by Alloying with Oxygen, J. Am. Chem. Soc. 134, 13216-13219 (2016).
  • [46] M. Blanchard, M. Alfredsson, J. Brodholt, et al., Arsenic incorporation into FeS2, pyrite and its influence on dissolution: A DFT study, Geochimica et Cosmochimica. Acta 71, 624-630 (2007).
  • [47] I. B. Obot, S. Kaya, C. Kaya, B. Tüzün, Density Functional Theory (DFT) modeling and Monte Carlo simulation assessment of inhibition performance of some carbohydrazide Schiff bases for steel corrosion, Physica. E 80, 82-90 (2016).
  • [48] Z. H. Wang, L. U. Jian-Jun, L. U. Xian-Cai, L. I. Juan, The effects of the typical components of extracellular polymeric substances (EPS) of microorganism on the bio-decomposition of pyrite, Acta Petrologica et Miner. 28, 553-558 (2009).
  • [49] L. H. Madkour, Correlation between corrosion inhibitive effect and quantum molecular structure of Schiff bases for iron in acidic and alkaline media, Nature 2, 680-704 (2014).
  • [50] M. Yadav, D. Sharma, T. K. Sarkar, Adsorption and corrosion inhibitive properties of synthesized hydrazine compounds on N80 steel/hydrochloric acid interface: Electrochemical and DFT studies, J. Mol. Liq. 212, 451-460 (2015).
  • [51] H. Lgaz, V. Srivastava, J. Haque, C. Verma, P. Singh, R. Salghi, M. A. Quraishi, Amino acid based imidazolium zwitterions as novel and green corrosion inhibitors for mild steel: Experimental, DFT and MD studies, J. Mol. Liq. 244, 340-352 (2017).
  • [52] S. Benabid, T. Douadi, S. Issaadi, C. Penverne, S. Chafaa, Electrochemical and DFT studies of a new synthesized Schiff base ascorrosion inhibitor in 1M HCl, Measurement 59, 53-63 (2016).
  • [53] J. H. Al-Fahemi, M. Abdallah, E. A. M. Gad, Experimental and theoretical approach studies for melatonin drug as safely corrosion inhibitors for carbon steel using DFT, J. Mol. Liq. 222, 1157-1163 (2016).
  • [54] W. Xiao, L. Liang, W. Pan, L. Wen, J. Zhang, Y. Yan, How the Inhibition Performance Is Affected by Inhibitor Concentration: A Perspective from Microscopic Adsorption Behavior, Ind. Eng. Chem. Res. 53, 16785-16792 (2014).
  • [55] M. A. Bedair, M. M. B. El-Sabbah, A. S. Fouda, H. M. Elaryian, Synthesis, electrochemical and quantum chemical studies of someprepared surfactants based on azodye and Schiff base as corrosion inhibitors for steel in acid medium, Corros. Sci. 128, 54-72 (2017).
  • [56] J. Aldana-González, A. Espinoza-Vázquez, M. Romero-Romo, J. Uruchurtu-Chavarin, M. Palomar-Pardavé, Electrochemical evaluation of cephalothin as corrosion inhibitor for API 5L X52steel immersed in an acid medium, Arab. J. Chem. 11, 0903-0903 (2015).
  • [57] A. Espinoza-Vázquez, G. E. Negrón-Silva, R. González-Olvera, D. Angeles-Beltrán, H. Herrera-Hernández, M. Romero-Romo, M. Palomar-Pardavé, Mild steel corrosion inhibition in HCl by di-alkyl and di-1,2,3-triazole derivatives of uracil and thymine, Mater. Chem. Phys. 145, 407-417 (2014).
Uwagi
EN
1. Projects (U1608254, 51374066) supported by the National Natural Science Foundation of China; Assistance of Material Studio is supported by pro. Jian Hua Chen from Guangxi University.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-122f8a1a-7ab1-4617-9a3b-33e1072c4736
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.