PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-way ANOVA gage R&R working example applied to speckle intensity statistics due to different random vertical surface roughness characteristics using the Fresnel diffraction integral

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present computer simulations of a two-way ANOVA gage R&R study to determine the effects on the average speckle width of intensity patterns caused by scattered light reflected from random rough surfaces with different statistical characteristics. We illustrate how to obtain reliable computer data that properly simulate experimental measurements by means of the Fresnel diffraction integral, which represents an accurate analytical model for calculating the propagation of spatially-limited coherent beams that have been phase-modulated after being reflected by the vertical profiles of the generated surfaces. For our description we use four differently generated vertical profiles and five different vertical randomly generated roughness values.
Rocznik
Strony
103--117
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr., wzory
Twórcy
  • Centro de investigaciones en Óptica A.C., Loma del Bosque 115, Colonia Lomas del Campestre, León, C.P. 37150, Guanajuato, México
autor
  • Centro Nacional de Metrología, km 4.5 Carretera a Los Cués, Municipio El Marqués, C.P. 76246, Querétaro, México
autor
  • Centro de investigaciones en Óptica A.C., Loma del Bosque 115, Colonia Lomas del Campestre, León, C.P. 37150, Guanajuato, México
Bibliografia
  • [1] https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en:sec:B (1994).
  • [2] Joenathan, C., Franze, B., Haible, P., Tiziani, H. J. (1998). Speckle interferometry with temporal phase evaluation for measuring large-object deformation. Appl. Opt., 37(13), 2608-2614.
  • [3] Léger, D., Mathieu, E., Perrin, J.C. (1975). Optical surface roughness determination using speckle correlation technique. Appl. Opt., 14(4), 872-877.
  • [4] Tango, W.J., Davis, J., Thompson, R.J., Brown, R.H. (1979). A ‘Narrabri’ Binary Star Resolved by Speckle Interferometry. Publ. Astron. Soc. Aust., 3(5), 323-324.
  • [5] Junior, R.A.B., Silva, B.O., Rabelo, G., Costa, R.M., Enes, A.M., Cap, N., Horgan, G. (2007). Reliability of biospeckle image analysis. Opt. Lasers Eng., 45(3), 390-395.
  • [6] Yokoi, N., Aizu, Y., Uozumi, J. (2018). Fractality of biospeckle pattern observed in blood coagulation process. In Biomedical Imaging and Sensing Conference, SPIE., 10711, 107111V.
  • [7] Summers, J.E., Soukup, R.J., Gragg, R.F. (2005). Characterization and fabrication of synthetic rough surfaces for acoustical scale-model experiments. Naval Research Lab Washington Dc Acoustics Div, NRL/MR-MM/7140-05-8871.
  • [8] Equis, S., Jacquot, P. (2006). Simulation of speckle complex amplitude: advocating the linear model. Speckle06: Speckles, From Grains to Flowers, SPIE., 6341, 634138.
  • [9] Guérin, C.A. (2002). Scattering on rough surfaces with alpha-stable non-Gaussian height distributions. Wave Random Media, 12(3), 293-306.
  • [10] Wu, S.C., Chen, M.F., Fung, A.K. (1988). Non-Gaussian surface generation. IEEE Trans. Geosci. Remote Sens., 26(6), 885-888.
  • [11] Wu, S.C., Chen, M.F., Fung, A.K. (1988). Scattering from non-Gaussian randomly rough surfaces-cylindrical case. IEEE Trans. Geosci. Remote Sens., 26(6), 790-798.
  • [12] Patir, N. (1978). A numerical procedure for random generation of rough surfaces. Wear, 47(2), 263-277.
  • [13] Cheng, C., Liu, C., Teng, S., Zhang, N., Liu, M. (2002). Half-width of intensity profiles of light scattered from self-affine fractal random surfaces and simulational verifications. Phys. Rev. E., 65(6), 061104.
  • [14] Uchida, K., Honda, J., Yoon, K.Y. (2011). An algorithm for rough surface generation with in homogeneous parameters. JACT, 5(2), 259-271.
  • [15] Goodman, J.W. (2008). Introduction to Fourier optics. Roberts and Company publishers, 63-88.
  • [16] Dainty, J.C. (1975). Laser speckle and related phenomena. Springer-Verlag Berlin Heidelberg New York, 9-74.
  • [17] Brown, J.C., Puckette, M.S. (1989). Calculation of a “narrowed” autocorrelation function. J. Acoust. Soc. Am., 85(4), 1595-1601.
  • [18] Stryhn, H. (2006). Notes on Linear Mixed Models. Atlantic Veterinary College, PEI, 1-15.
  • [19] Montgomery, D.C. (2013). Design and analysis of experiments. John Wiley & Sons, Inc., 573-601.
  • [20] Vardeman, S.B., Jobe, J.M. (2016). Statistical Methods for Quality Assurance. Springer-Verlag New York, 62-75.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-122ef38e-f6ca-41e9-ab72-f67b704ca56d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.