PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mapping the geological fault zone that triggered the Mw 6.1 Pasaman earthquake in Indonesia on the basis of gravity anomalies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Indonesia’s Great Sumatran Fault (GSF) is well known for its destructive capability, having generated many moderate to strong earthquakes, causing damage. A better understanding of GSF characteristics is needed to mitigate future geological hazards in Sumatra and prevent unnecessary loss and damages. The present research aims to map the fault structure in West Pasaman, Indonesia, using the Topex satellite and global gravity model plus (GGM+). Residual anomalies from Bouguer data (50–80 mGal) show a continuous pattern between the confluence of the Angkola, Sumpur and Sianok fault segments in the Pasaman. The vertical and horizontal derivatives were also applied in order to clarify fault structure, which is demonstrated by high derivative anomalies (0.05–0.08 mGal/m) in the horizontal and 0.1 mGal/m in the vertical. Moreover, a cross sectional model from the 3D algorithm (Occam and Singular Value Decomposition) may show the presence of several segments/faults in the Pasaman region, such as the Angkola, Barumun and Sumpur faults with high-density values of ρ = 2.3–2.4 g/cm3. Based on results obtained, the use of Topex and GGM+ has provided an overview of the effectiveness of global gravity in mapping faults in the Pasaman region. It is a time-consuming, yet inexpensive method that can be applied to other areas, especially those that are difficult to reach.
Czasopismo
Rocznik
Strony
151--166
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
  • Geophysical Engineering Department, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Tsunami and Disaster Mitigation Research Center (TDMRC), Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
autor
  • Geophysical Engineering Department, Faculty of Mining and Petroleum, Bandung Institute of Technology, Bandung 40132, Indonesia
  • Geophysical Engineering Department, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Geophysical Engineering Department, Sumatera Institute of Technology, Lampung 35365, Indonesia
  • Department of Geology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory Malaysia
Bibliografia
  • Abdel Zaher M., Elbarbary S., Sultan S.A., El-Qady G., Ismail A. & Takla E.M., 2018. Crustal thermal structure of the Farafra oasis, Egypt, based on airborne potential field data. Geothermics 75, 220–234.
  • Barber A.J., Crow M.J. & Milsom J.S., 2005. Sumatra. Geology, Resources and Tectonic Evolution. Geological Society Memoirs 31, London, 290 pp.
  • Bennet M., Doyle P., Larwood J. & Prosser C., 1996. Geology on your Doorstep. The Geological Society, London, 270 pp.
  • Cooper G.R.J., 2020. A modified enhanced horizontal derivative filter for potential field data. Exploration Geophysics 51, 549–554.
  • Cordell L. & Grauch V.J.S., 1982. Mapping basement magnetisation zones from aeromagnetic data in the San Juan Basin, New Mexico. SEG Technical Program Expanded Abstracts, 246–247. Dewanto B.G., Priadi R., Heliani L.S., Natul A.S., Yanis M., Suhendro I. & Julius A.M., 2022. The 2022 Mw 6.1 Pasaman Barat, Indonesia Earthquake, Confirmed the Existence of the Talamau Segment Fault Based on Teleseismic and Satellite Gravity Data. Quaternary 5, 45.
  • Diament M., Harjono H., Karta K., Deplus C., Dahrin D., Zen Jr M.T., Gerard M., Lassal O., Martin A. & Malod J., 1992. Mentawai fault zone off Sumatra: A new key to the geodynamics of western Indonesia. Geology 20, 259–262.
  • Doğru F., Pamukçu O. & Özsöz I., 2017. Application of tilt angle method to the Bouguer gravity data of Western Anatolia. Bulletin of the Mineral Research and Exploration 155, 213–222.
  • Fauzik D., Haris A., Martha A.A. & Riyanto A., 2020. Liquefaction potential identification in the Central Sulawesi using gravity inversion model in the Central Sulawesi, in: IOP Conference Series: Earth and Environmental Science, pp. 1–7.
  • Ferreira F.J.F., de Souza J., de Barros e Silva Bongiolo A. & de Castro L.G., 2013. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics 78, J33–J41.
  • Genrich J.F., Bock Y., McCaffrey R., Prawirodirdjo L., Stevens C.W., Puntodewo S.S.O., Subarya C. & Wdowinski S., 2000. Distribution of slip at the northern Sumatran fault system. Journal of Geophysical Research Solid Earth 105, 28327–28341.
  • Ghosh G.K., 2019. Interpretation of gravity anomaly to delineate thrust faults locations at the northeastern part of India and its adjacent areas using source edge detection technique, tilt derivative and Cos (θ) analysis. Acta Geophysica 67, 1277–1295.
  • Gönenç T., 2014. Investigation of distribution of embedded shallow structures using the first order vertical derivative of gravity data. Journal Applied Geophysics 104, 44–57.
  • Gruber T., Visser P.N.A.M., Ackermann C. & Hosse M., 2011. Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. Journal of Geodesy 85, 845–860.
  • Hill E.M., Yue H., Barbot S., Lay T., Tapponnier P., Hermawan I., Hubbard J., Banerjee P., Feng L., Natawidjaja D. & Sieh K., 2015. The 2012 Mw 8.6 Wharton Basin sequence: A cascade of great earthquakes generated by near-orthogonal, young, oceanic mantle faults. Journal of Geophysical Research Solid Earth 120, 3723–3747.
  • Hirt C., Claessens S., Fecher T., Kuhn M., Pail R. & Rexer M., 2013. New ultra-high resolution picture of Earth’s gravity field. Geophysical Research Letters 40, 4279–4283.
  • Julius A.M., Pribadi S., Saputra A.A., Prayitno B.S., Ahadi S., Hermanto D., Arifin H., Satria L.A. & Zevanya C.S.S., 2022. An On-Site Post-Event Survey of the 2022 Mw 6.1 West Pasaman Sumatera Destructive Earthquake. Journal of Renewable Energy 2, 39–49.
  • Kardo R., Rahma Mulyani R. & Yulastri W., 2022. Play Therapy as A Trauma Healing Effort In Children Victims of The Earthquake In Nagari Nagari Pasaman. Human: Journal of Community and Public Service 1, 90–94.
  • Lenhart A., Jackson C.A.-L., Bell R.E., Duffy O.B., Gawthorpe R.L. & Fossen H., 2019. Structural architecture and composition of crystalline basement offshore west Norway. Lithosphere 11, 273–293.
  • Lewerissa R., Sismanto S., Setiawan A., Pramumijoyo S. & Lapono L., 2020. Integration of gravity and magnetic inversion for geothermal system evaluation in Suli and Tulehu, Ambon, eastern Indonesia. Arabian Journal of Geosciences 13, 726.
  • Lewerissa R., Alzair N. & Lapono L., 2021. Identification of Ransiki fault segment in South Manokwari Regency, West Papua Province, Indonesia based on analysis of a high-resolution of global gravity field: Implications on the Earthquake Source Parameters. IOP Conference Series Earth Environmental Science 873, 012048.
  • Martakusumah R. & Srigutomo W., 2015. Comparison of 1D magnetotelluric inversion using Levenberg-Marquardt and Occam’s inversion schemes. AIP Conference Proceedings 1656, 070014.
  • Marwan, M., Yanis, M., Nugraha, G. S., Zainal, M., Arahman, N., Idroes, R., Dharma, D. B., Saputra, D., & Gunawan, P., 2021. Mapping of Fault and Hydrothermal System beneath the Seulawah Volcano Inferred from a Magnetotellurics Structure. Energies 14, 6091.
  • McCaffrey R., 2009. The tectonic framework of the sumatran subduction zone. Annual Review of Earth and Planetary Sciences 37, 345–366.
  • Meltzner A.J., Sieh K., Chiang H.W., Wu C.C., Tsang L.L.H., Shen C.C., Hill, E.M., Suwargadi B.W., Natawidjaja D.H., Philibosian B. & Briggs R.W., 2015. Time-varying interseismic strain rates and similar seismic ruptures on the Nias–Simeulue patch of the Sunda megathrust. Quaternary Science Reviews 122, 258–281.
  • Mosher D.C., Austin J.A., Fisher D. & Gulick S.P.S., 2008. Deformation of the northern Sumatra accretionary prism from high-resolution seismic reflection profiles and ROV observations. Marine Geology 252, 89–99.
  • Muksin U., Bauer K., Muzli M., Ryberg T., Nurdin I., Masturiyono M. & Weber M., 2019. AcehSeis project provides insights into the detailed seismicity distribution and relation to fault structures in Central Aceh, Northern Sumatra. Journal Asian Earth Science 171, 20–27.
  • Nasuti A., Pascal C. & Ebbing J., 2012. Onshore–offshore potential field analysis of the Møre–Trøndelag Fault Complex and adjacent structures of Mid Norway. Tectonophysics 518–521, 17–28.
  • Natawidjaja D.H. & Triyoso W., 2007. The Sumatran Fault Zone – from Source to Hazard. Journal of Earthquake and Tsunami 1, 21–47.
  • Oruç B., 2011. Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-central Anatolia region, Turkey. Pure Applied Geophysics 168, 1769–1780.
  • Özgü Arisoy M. & Dikmen Ü., 2011. Potensoft: MATLAB-based software for potential field data processing, modeling and mapping. Computer Geoscience 37, 935–942.
  • Pamukçu O., Gönenç T., Çirmik A. & Kahveci M., 2015. Investigation of the Siğacik Bay’s displacement characteristic by using GPS and gravity data in Western Anatolia. Journal of Asian Earth Sciences 99, 72–84.
  • Pavlis N.K., Holmes S.A., Kenyon S.C. & Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth 117, 1–38.
  • Pham L.T., Van Vu T., Le Thi S. & Trinh P.T., 2020. Enhancement of Potential Field Source Boundaries Using an Improved Logistic Filter. Pure Applied Geophysics 177, 5237–5249.
  • Pirttijarvi M., 2014. Gravity interpretation and modelling software based on a 3-D block model, User’s guide to version 2.1. Geological Survey of Findland, 1–63.
  • Rao N.P., Rao C.N., Hazarika P., Tiwari V.M., Kumar M.R., Singh A. & Sharkov E. V, 2011. Structure and tectonics of the Andaman subduction zone from modeling of seismological and gravity data. Intech Publisher, Rijeka, Croatia, pp. 249–268.
  • Rexer M. & Hirt C., 2015. Spectral analysis of the Earth’s topographic potential via 2D-DFT: a new data-based degree variance model to degree 90,000. Journal of Geodesy 89, 887–909.
  • Reynolds J.M., 2011. An Introduction to Applied and Environmental Geophysics. 2nd Edition. JohnWiley & Sons, Ltd., Chichester, UK, 712 pp.
  • Ribeiro Filho N., Martins C.M. & Santos R.D.S., 2018. A novel regional-residual separation approach for gravity data through crustal modeling. Brazilian Journal of Geophysics 36, 491–505.
  • Riedel S., Jokat W. & Steinhage D., 2012. Mapping tectonic provinces with airborne gravity and radar data in Dronning Maud Land, East Antarctica. Geophysical Journal International 189, 414–427.
  • Saibi H., Mogren S., Mukhopadhyay M. & Ibrahim E., 2019. Subsurface imaging of the Harrat Lunayyir 2007–2009 earthquake swarm zone, western Saudi Arabia, using potential field methods. Journal of Asian Earth Science 169, 79–92.
  • Sieh K. & Natawidjaja D., 2000. Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Resources 105, 28295–28326.
  • Silvennoinen H. & Kozlovskaya E., 2007. 3D structure and physical properties of the Kuhmo Greenstone Belt (eastern Finland): Constraints from gravity modeling and seismic data and implications for the tectonic setting. Journal of Geodynamics 43, 358–373.
  • Thanh L., Erdinc P. & Thanh O., 2019. Edge enhancement of potential field data using the logistic function and the total horizontal gradient. Acta Geodaetica et Geophysica 54, 143–155.
  • Thanh Pham L., Anh Nguyen D., Eldosouky A.M., Abdelrahman K., Van Vu T., Al-Otaibi N., Ibrahim E. & Kharbish S., 2021. Subsurface structural mapping from high-resolution gravity data using advanced processing methods. Journal of King Saud University–Science 33, 101488.
  • Tiwari R.K. & Paudyal H., 2022. Frequency magnitude distribution and spatial correlation dimension of earthquakes in north-east Himalaya and adjacent regions. Geologos 28, 115–128.
  • Tong L.T. & Guo T.R., 2007. Gravity terrain effect of the seafloor topography in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 18, 699–713.
  • Vaish J. & Pal S.K., 2015. Geological mapping of Jharia Coalfield, India using GRACE EGM2008 gravity data : a vertical derivative approach. Geocarto International 30, 388–401.
  • Wada S., Sawada A., Hiramatsu Y., Matsumoto N., Okada S., Tanaka T. & Honda R., 2017. Continuity of subsurface fault structure revealed by gravity anomaly: the eastern boundary fault zone of the Niigata plain, central Japan. Earth, Planets and Space 69, 1–12.
  • Weller O., Lange D., Tilmann F., Natawidjaja D., Rietbrock A., Collings R. & Gregory L., 2012. The structure of the Sumatran Fault revealed by local seismicity. Geophysical Research Letter 39, L01306.
  • Wirth E.A., Sahakian V.J., Wallace L.M. & Melnick D., 2022. The occurrence and hazards of great subduction zone earthquakes. Nature Reviews Earth & Environment 3, 125–140.
  • Wulandari R. & Chan C., 2022. The 2022 Mw 6.2 Pasaman, Indonesia, earthquake and its implication of seismic hazard in central-west Sumatra. Geoscience Letters 10, 25.
  • Yanis M., Bakar M. & Ismai N., 2017. The Use of VLF-EM and Electromagnetic Induction Methods for Mapping the Ancient Fort of Kuta Lubok as Tsunami Heritage. 23rd European Meeting of Environmental and Engineering Geophysics. European Association of Geoscientists & Engineers 2017, pp. 1–5.
  • Yanis M., Abdullah F., Zaini N. & Ismail N., 2021. The northernmost part of the Great Sumatran Fault map and images derived from gravity anomaly. Acta Geophysica 69, 795–807.
  • Yanis M., Ismail N. & Abdullah F., 2022a. Shallow Structure Fault and Fracture Mapping in Jaboi Volcano, Indonesia, Using VLF–EM and Electrical Resistivity Methods. Natural Resources Research 31, 335–352.
  • Yanis M., Marwan, Idroes R., Zaini N., Paembonan A.Y., Ananda R. & Ghani A., 2022b. A pilot survey for mapping the fault structure around the Geuredong volcano by using high-resolution global gravity. Acta Geophysica 70, 2057–2075.
  • Yanis M., Simanjuntak A., Abdullah F., Marwan M. & Ghani A., 2023. Application of Seismicity and Gravity Observation-Based Filtering Model for Mapping a Fault Structure in Weh Island, Indonesia. Iraqi Geological Journal 56, 260–274.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-122cdcc9-e21d-40c4-b499-3243fb240124
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.