PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deep convolutional generative adversarial networks in retinitis pigmentosa disease images augmentation and detection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Large medical datasets are crucial for advancing contemporary medical practices that incorporate computer vision and machine learning techniques. These records serve as indispensable resources for identifying patterns that assist healthcare professionals in diagnosing rare diseases and enhancing patient outcomes. Moreover, these datasets drive research into the causes and progression of such diseases, potentially leading to innovative therapeutic strategies. However, the acquisition of such data poses significant challenges due to privacy and ethical concerns, as well as the rarity of certain conditions. Therefore, it is imperative to both collect new medical data and develop tools that facilitate the enhancement of existing datasets while preserving the accurate characteristics of the diseases. This study focuses on leveraging Deep Convolutional Generative Adversarial Networks (DCGAN) to expand a dataset containing images of retinitis pigmentosa, a rare eye condition affecting the retina. Our study showcases that integrating Xtreme Gradient Boosting (XGBoost) within the DCGAN framework enhances the clarity and quality of these augmented images. By employing hybrid VGG16 alongside XGBoost techniques during training, we observe improvements in detection accuracy. The outcomes of the proposed method are highly promising, with the model achieving all key performance metrics surpassing the 90% threshold as well as improving baseline classification accuracy by almost 19%.
Twórcy
  • Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland
  • Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland
  • Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-400 Lublin, Poland
  • University of Cyprus, 75 Kallipoleos Str., Nicosia 1678, Cyprus
  • CYENS Centre of Excellence, 23 Dimarchias Square, Nicosia 1016, Cyprus
  • CYENS Centre of Excellence, 23 Dimarchias Square, Nicosia 1016, Cyprus
  • Chair and Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-400 Lublin, Poland
Bibliografia
  • 1. Panayides A.S., Amini A., Filipovic N.D., Sharma A., Tsaftaris S.A., Young A., Foran D., Do N., Golemati S., Kurc T., Huang K., Nikita K. S., Veasey B.P., Zervakis M., Saltz J.H., Pattichis C.S. AI in medical imaging informatics: current challenges and future directions. IEEE J Biomed Health. 2020; 24(7): 1837–1857. doi: 10.1109/JBHI.2020.2991043.
  • 2. Skublewska-Paszkowska, M., Powroznik, P., Barszcz, M., Dziedzic, K. Identifying and animating movement of Zeibekiko sequences by spatial temporal graph convolutional network with multi-attention modules. Adv Sci Technol Res J. 2024; 18(8): 217–227.
  • 3. Nowomiejska K., Powroznik P., Skublewska-Paszkowska M., Adamczyk K., Concilio M., Sereikaite L., Zemaitiene R., Toro M. D., Rejdak R. Residual attention network for distinction between visible optic disc drusen and healthy optic discs. Opt Lasers Eng. 2024; 176: 108056. https://doi.org/10.1016/j.optlaseng.2024.108056.
  • 4. Chen T.C., Lim W.S., Wang V.Y., Ko M.L., Chiu S.I., Huang Y.S., Yang M.C., Hu F., Jang J.R., Yang C.H. Artificial intelligence–assisted early detection of retinitis pigmentosa – the most common inherited retinal degeneration. J Digit Imaging. 2021; 34: 948–958. doi: 10.1007/s10278-021-00479-6.
  • 5. Li T., Bo W., Hu C., Kang H., Liu H., Wang K., Fu H. Applications of deep learning in fundus images: A review. Med Image Anal. 2021; 69: 101971.
  • 6. Skublewska-Paszkowska M., Powroznik P., Rejdak R., Nowomiejska K. Application of convolutional gated recurrent units U-net for distinguishing between retinitis pigmentosa and cone-rod dystrophy. Acta Mech Autom. 2024; 18: 3.
  • 7. Sun G., Wang X., Xu L., Li C., Wang W., Yi Z., Luo H., Su Y., Zheng J., Li Z., Chen Z., Zheng H., Chen C. Deep learning for the detection of multiple fundus diseases using ultra-widefield images. Ophthalmol Ther. 2023; 12(2): 895–907.
  • 8. Masumot H., Tabuchi H., Nakakura S., Ohsugi H., Enno H., Ishitobi N., Ohsugi E., Mitamura Y. Accuracy of a deep convolutional neural network in detection of retinitis pigmentosa on ultrawide-field images. PeerJ. 2019; 7: e6900.
  • 9. Jain L., Murthy H.S., Patel C., Bansal D. Retinal eye disease detection using deep learning. In: Proc 14th Int Conf Info Processing (ICINPRO). IEEE. 2018; 1–6.
  • 10. Li B., Cheng F., Cai H., Zhang X., Cai W. A semi-supervised approach to fault detection and diagnosis for building HVAC systems based on the modified generative adversarial network. Energy Build. 2021; 246: 111044.
  • 11. Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y. Generative adversarial nets. Adv Neural Inf Process Syst. 2014; 27.
  • 12. Yan K., Huang J., Shen W., Ji Z. Unsupervised learning for fault detection and diagnosis of air handling units. Energy Build. 2020; 210: 109689.
  • 13. Navaneethan R., Devarajan H. Enhancing diabetic retinopathy detection through preprocessing and feature extraction with MGA-CSG algorithm. Expert Syst Appl. 2024; 249: 123418.
  • 14. Oliveira G.C., Rosa G.H., Pedronette D.C., Papa J.P., Kumar H., Passos L.A., Kumar D. Robust deep learning for eye fundus images: Bridging real and synthetic data for enhancing generalization. Biomed Signal Process Control. 2024; 94: 106263.
  • 15. Veturi Y.A., Woof W., Lazebnik T., Moghul I., Woodward-Court P., Wagner S.K., Cabral de Guimarães T.A., Varela M.D., Liefers B., Patel P.J., Beck S., Webster A.R., Mahroo O., Keane P.A., Michaelides M., Balaskas K., Pontikos N. SynthEye: Investigating the impact of synthetic data on artificial intelligence-assisted gene diagnosis of inherited retinal disease. Ophthalmol Sci. 2023; 3(2): 100258.
  • 16. Das V., Dandapat S., Bora P.K. Unsupervised super-resolution of OCT images using generative adversarial network for improved age-related macular degeneration diagnosis. IEEE Sens J. 2020; 20(15): 8746–8756.
  • 17. Chaudhuri R., Deb S. Precise lesion analysis to detect diabetic retinopathy using Generative Adversarial Network (GAN) and Mask-RCNN. Procedia Comput Sci. 2024; 235: 520–529.
  • 18. Yang Z., Zhang Y., Xu K., Sun J., Wu Y., Zhou M. DeepDrRVO: A GAN-auxiliary two-step masked transformer framework benefits early recognition and differential diagnosis of retinal vascular occlusion from color fundus photographs. Comput Biol Med. 2023; 163: 107148.
  • 19. Burlina P.M., Joshi N., Pacheco K.D., Liu T.A., Bressler N.M. Assessment of deep generative models for high-resolution synthetic retinal image generation of age-related macular degeneration. JAMA Ophthalmol. 2019; 137(3): 258–264.
  • 20. Mercaldo F., Brunese L., Martinelli F., Santone A., Cesarelli M. Generative Adversarial Networks in Retinal Image Classification. Appl. Sci., 2023, 13(18), 10433.
  • 21. Atas I. Comparison of deep convolution and least squares GANs for diabetic retinopathy image synthesis. Neural. Comput. Appl. 2023, 35(19), 14431–14448.
  • 22. Menten M. J., Holland R., Leingang O., Bogunović H., Hagag A. M., Kaye R., Riedl S., Traber G. L., Hassan O. N., Pawlowski N., Glocker B., Fritsche L. G., Scholl H. P. N., Sivaprasad S., Schmidt-Erfurth U., Rueckert D., Lotery A. J., PINNACLE Consortium. Exploring healthy retinal aging with deep learning. Ophthalmol Sci. 2023, 3(3), 100294.
  • 23. Diaz-Pinto A., Colomer A., Naranjo V., Morales S., Xu Y., Frangi A.F. Retinal image synthesis and semi-supervised learning for glaucoma assessment. IEEE Trans. Image Process. 2019, 38(9), 2211–2218.
  • 24. Joseph J. and Sreela S. R. MODCN: Fine-tuned deep-convolutional neural network with GAN deployed to forecast diabetic eye damage in fundus retinal images. Int. J. Image Graph. 2024, 24(03), 2450029.
  • 25. Choi E. Y., Han S. H., Ryu I. H., Kim J. K., Lee I. S., Han E., Kimf H., Yoo J. Y. C., Yoo T. K. Automated detection of crystalline retinopathy via fundus photography using multistage generative adversarial networks. Biocybern. Biomed. Eng. 2023, 43(4), 725–735.
  • 26. Dohare S., Al Ansari M. S., Naga Ramesh J. V., El-Ebiary Y. A. A hybrid GAN-BiGRU model enhanced by african buffalo optimization for diabetic retinopathy detection. Int. J. Adv. Comput. Sci. 2024, 15(1).
  • 27. Krishnamoorthy S., Weifeng Y., Luo J., Kadry S. AO-HRCNN: archimedes optimization and hybrid region-based convolutional neural network for detection and classification of diabetic retinopathy. Artif. Intell. Rev. 2023, 56(Suppl 1), 483–511.
  • 28. Wang S., Li K., Yin Q., Ren J., Zhang J. Semi-supervised generative adversarial learning for denoising adaptive optics retinal images. Biomed. Opt. Express. 2024, 15(3), 1437–1452.
  • 29. Radford A., Metz L., Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint. 2015.
  • 30. Arjovsky M., Chintala S., Bottou L. Wasserstein generative adversarial networks. In: International conference on machine learning. 2017, 214–223, PMLR.
  • 31. Basori A.H., Malebary S.J., Alesawi S. Hybrid-Deep Convolutional Generative Adversarial Network (DCGAN) and Xtreme Gradient Boost for X-ray Image Augmentation and Detection. Appl. Sci. 2023, vol. 13(23), 12725.
  • 32. Konidaris F., Tagaris T., Sdraka M., Stafylopatis A. Generative Adversarial Networks as an Advanced Data Augmentation Technique for MRI Data. In: VISIGRAPP (5: VISAPP), 2019, 48–59.
  • 33. Chen T. and Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016, 785–794.
  • 34. Simonyan K. and Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint. 2014.
  • 35. Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15(1), 1929–1958.
  • 36. Kingma D. P. and Ba J. Adam: A method for stochastic optimization. arXiv preprint. 2014.
  • 37. Powroznik P., Wojcicki P., Przylucki S. W. Scalogram as a representation of emotional speech. IEEE Access. 2021, 9, 154044–154057.
  • 38. Plaksyvyi, A., Skublewska-Paszkowska, M., Powroznik, P. A comparative analysis of image segmentation using classical and deep learning approach. Advances in Science and Technology Research Journal, 2023, 17(6).
  • 39. Skublewska-Paszkowska M., Powroznik P. Temporal pattern attention for multivariate time series of tennis strokes classification. Sensors. 2023, 23(5), 2422.
  • 40. Hu S., Yu W., Chen Z., Wang S. Medical image reconstruction using generative adversarial network for Alzheimer disease assessment with class-imbalance problem. In: 2020 IEEE 6th International Conference On Computer And Communications (ICCC). 2020, 1323–1327.
  • 41. Chadebec C., Thibeau-Sutre E., Burgos N., Allassonnière S. Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 2879–2896.
  • 42. Anaya-Isaza A., Mera-Jiménez L. Data augmentation and transfer learning for brain tumor detection in magnetic resonance imaging. IEEE Access. 2022, 10, 23217–23233.
  • 43. Miyoshi T., Higaki A., Kawakami H., Yamaguchi O. Automated interpretation of the coronary angioscopy with deep convolutional neural networks. Open Heart. 2020, 7, e001177.
  • 44. Gong Y., Zhang Y., Zhu H., Lv J., Cheng Q., Zhang H., He Y., Wang S. Fetal congenital heart disease echocardiogram screening based on DGACNN: adversarial one-class classification combined with video transfer learning. IEEE T. Med. Imaging. 2–19, 39, 1206–1222.
  • 45. Bhagat V. and Bhaumik S. Data augmentation using generative adversarial networks for pneumonia classification in chest xrays. In: 2019 Fifth International Conference On Image Information Processing (ICIIP). 2019, 574-579.
  • 46. Sedik A., Iliyasu A., Abd El-Rahiem B., Abdel Samea M., Abdel- Raheem A., Hammad M., Peng J., Abd El-Samie F., Abd El-Latif A, Deploying machine and deep learning models for efficient data-augmented detection of COVID-19 infections. Viruses. 2020, 12, 769.
  • 47. Onishi Y., Teramoto A., Tsujimoto M., Tsukamoto T., Saito K., Toyama H., Imaizumi K., Fujita H. Investigation of pulmonary nodule classification using multi-scale residual network enhanced with 3DGAN-synthesized volumes. Radiol. Phys. Technol. 2020, 13, 160–169.
  • 48. Onishi Y., Teramoto A., Tsujimoto M., Tsukamoto T., Saito K., Toyama H., Imaizumi K., Fujita H. Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 173–178. https://doi.org/10.1007/s11548-019-02092-z.
  • 49. Tekchandani H., Verma S., Londhe N., Performance improvement of mediastinal lymph node severity detection using GAN and Inception network, Comput. Methods Programs Biomed., 2020, 194, 105478, 202. https://doi.org/10.1016/j.cmpb.2020.105478.
  • 50. Toda R., Teramoto A., Tsujimoto M., Toyama H., Imaizumi K., Saito K., Fujita H., Synthetic CT image generation of shape-controlled lung cancer using semi-conditional InfoGAN and its applicability for type classification, Int. J. Comput. Assist. Radiol. Surg., 2021, 16, 241–251. https://doi.org/10.1007/s11548-021-02308-1.
  • 51. Apostolopoulos I. D., Papathanasiou N. D., Panayiotakis G. S., Classification of lung nodule malignancy in computed tomography imaging utilizing generative adversarial networks and semi-supervised transfer learning, Biocybern. Biomed. Eng., 2021, 41, 1243–1257. https://doi.org/10.1016/j.bbe.2021.08.006.
  • 52. Zhang X., Angelini E.D., Haghpanah F.S., Laine A.F., Sun Y., Hiura G.T., Dashnaw S.M., Prince S. W. Hoffman E.A., Ambale-Venkatesh B., Lima J. A., Wild J.M., Hughes E.W., Barr R.G., Shen W., Quantification of lung ventilation defects on hyperpolarized MRI: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD study, Magn. Reson. Imaging, 2022, 92, 140–149. https://doi.org/10.1016/j.mri.2022.06.016.
  • 53. Motamed S., Rogalla P., Khalvati F., Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images, Inform. Med. Unlocked, 2021, 27, 100779. https://doi.org/10.1016/j.imu.2021.100779.
  • 54. Toda R., Teramoto A., Kondo M., Imaizumi K., Saito K., Fujita H., Lung cancer CT image generation from a free-form sketch using style-based pix2pix for data augmentation. Sci. Rep., 2022, 12, 12867. 10.1038/s41598-022-16861-5.
  • 55. Desai S.D., Giraddi S., Verma N., Gupta P., Ramya S., Breast cancer detection using gan for limited labeled dataset, In 12th International Conference on Computational Intelligence and Communication Networks (CICN), 2020, 34–39. 10.1109/CICN49253.2020.9242551.
  • 56. KÜÇÜK E. N., UĞur A., Effects of Data Augmentation Techniques on Classification Performance in Knee MRIs, In 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 2023, 1–6. 10.1109/HORA58378.2023.10155785.
  • 57. Muramatsu C., Nishio M., Goto T., Oiwa M., Morita T., Yakami M., Kubo T., Togashi K. MRI data augmentation and deep learning-based classification of intervertebral disc degeneration, in 2020 IEEE 12th International Conference on Awareness Science and Technology (iCAST), 2020, 86–90.
  • 58. Pang T., Wong J.H.D., Ng W.L., Chan C.S. Semi-supervised GAN-based radiomics model for data augmentation in breast ultrasound mass classification. Comput. Methods Programs Biomed., 2021, 203, 106018.
  • 59. Guan Q., Chen Y., Wei Z., Heidari A. A., Hu H., Yang X.H., Zheng J., Zhou Q., Chen H., Chen F. Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN. Comput. Biol. Med., 2022, 145, 105444. https://doi.org/10.1016/j.compbiomed.2022.105444.
  • 60. Araújo T., Aresta G., Mendonça L., Penas S., Maia C., Carneiro A., Mendonça A.M., Campilho A. Data augmentation for improving proliferative diabetic retinopathy detection in eye fundus images. IEEE Access, 2020, 8, 182462–182474. https://doi.org/10.1109/ACCESS.2020.3028960.
  • 61. Prabha D.S., Kumar J.S. Performance analysis of image smoothing methods for low level of distortion. In: IEEE International Conference on Advances in Computer Applications (ICACA), 2016, 372–376. https://doi.org/10.1109/ICACA.2016.7887983.
  • 62. Koziel G. Simplified steganographic algorithm based on Fourier transform. Adv. Sci. Lett., 2024, 20(2), 505–509. https://doi.org/10.1166/asl.2014.5322.
  • 63. Shoaib M.R., Emara H.M., Mubarak A.S., Omer O.A., Abd El-Samie F.E., Esmaiel H. Revolutionizing diabetic retinopathy diagnosis through advanced deep learning techniques: Harnessing the power of GAN model with transfer learning and the DiaGAN-CNN model. Biomed. Signal Process. Control, 2025, 99, 106790.
  • 64. Devi Y. S., Kumar S. P. Diabetic Retinopathy (DR) Image Synthesis Using DCGAN and Classification of DR Using Transfer Learning Approaches. Int. J. Image Graph., 2024, 24(05), 2340009.
  • 65. Powroźnik P., Czerwiński D. Spectral methods in Polish emotional speech recognition. Advances in Science and Technology Research Journal, 2016, 10(32).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-122bded0-51f3-4539-9115-376d5b7f2610
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.