Identyfikatory
Warianty tytułu
Toward an Improvement of the Inverse Model Control-Originated Robustness Through the Application of Generalized Inverses: The Discrete-Time State-Space Framework of Grünwald-Letnikov
Języki publikacji
Abstrakty
W artykule poruszono problematykę analizy i syntezy wielowymiarowego sterowania perfekcyjnego obiektami opisanymi w dyskretnej przestrzeni stanów Grünwalda-Letnikova. W tym celu zastosowano autorską procedurę angażującą T- oraz σ-inwersję uogólnioną. Przykłady numeryczne środowiska MATLAB wykazały słuszność prowadzonych badań, skoncentrowanych na uodpornianiu dyskutowanej strategii sterowania podczas zastosowania niejednoznacznej inwersji σ. Zestawione problemy otwarte, obejmujące obiekty z czasem opóźnienia d > 1, to dobry prognostyk na podanie ujednoliconego podejścia w kierunku projektowania odpornych struktur sterowania IMC.
In the paper, both analysis and synthesis of the multivariable perfect control devoted to systems defined in the discrete-time state-space framework occupied by the Grünwald-Letnikov paradigm are investigated. For this purpose, the original procedure has been applied encompassing the generalized T- and σ-inverse. Numerical instances performed in the MATLAB environment have confirmed the σ-inverse-related contribution to the robustness of the inverse model control scheme. A set of open problems, associated with the discussed fractional-order systems respecting time delays d > 1, constitutes a serious research challenge in the nearest future toward a unified inverse model control-oriented framework.
Czasopismo
Rocznik
Tom
Strony
21--27
Opis fizyczny
Bibliogr. 22 poz., rys., wykr., wzory
Twórcy
autor
- Politechnika Opolska, Katedra Automatyki, ul. Prószkowska 76 (bud. nr 3), 45-758 Opole
autor
- Politechnika Opolska, Katedra Automatyki, ul. Prószkowska 76 (bud. nr 3), 45-758 Opole
Bibliografia
- 1. Tzounas G., Dassios I., Murad M.A.A., Milano F., Theory and Implementation of Fractional Order Controllers for Power System Applications, “IEEE Transactions on Power Systems”, Vol. 35, No. 6, 2020, 4622-4631, DOI: 10.1109/TPWRS.2020.2999415.
- 2. Busłowicz M., Stability of fractional discrete-time linear scalar systems with one delay, “Pomiary Automatyka Robotyka”, Vol. 17, No. 2, 2013, 327-332.
- 3. Zhenbin W., Zhenlei W., Guangyi C., Xinjian Z., Digital implementation of fractional order PID controller and its application, “Journal of Systems Engineering and Electronics”, Vol. 16, No. 1, 2005, 116-122.
- 4. Sadalla T., Horla D., Giernacki W., Kozierski P., Dynamic anti-windup compensator for fractional-order system with time-delay, “Asian Journal of Control”, Vol. 22, No. 5, 2020, 1767-1781, DOI: 10.1002/asjc.2200.
- 5. Kociszewski R., Observer synthesis for linear discrete-time systems with different fractional orders, “Pomiary Automatyka Robotyka”, Vol. 17, No. 2, 2013, 376-381.
- 6. Kothari K., Mehta U., Prasad R., Fractional-Order System Modeling and its Applications, “Journal of Engineering Science & Technology Review”, Vol. 12, No. 6, 2019, DOI: 10.25103/jestr.126.01.
- 7. Tolba M.F., AbdelAty A.M., Soliman N.S., Said L.A., Madian A.H., Azar A.T., Radwan A.G., FPGA implementation of two fractional order chaotic systems, “AEU - International Journal of Electronics and Communications”, Vol. 78, 2017, 162-172, DOI: 10.1016/j.aeue.2017.04.028.
- 8. Hunek W.P., Perfect control for right-invertible Grünwald-Letnikov plants - an innovative approach to practical implementation, “Fractional Calculus and Applied Analysis”, Vol. 22, No. 2, 2019, 424-443, DOI: 10.1515/fca-2019-0026.
- 9. Feliks T., Hunek W.P., Stanimirovi´c P.S., Application of Generalized Inverses in the Minimum-Energy Perfect Control Theory, “IEEE Transactions on Systems, Man, and Cybernetics: Systems”, Vol. 53, No. 7, 2023, 4560-4575, DOI: 10.1109/TSMC.2023.3253778.
- 10. Sadalla T., Horla D., Giernacki W., Kozierski P., Stability analysis and tracking performance of fractional-order PI controller for a second-order oscillatory system with time-delay, [In:] 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), 2016, 322-326, DOI: 10.1109/MMAR.2016.7575155.
- 11. Tan W., Unified tuning of PID load frequency controller for power systems via IMC, “IEEE Transactions on Power Systems”, Vol. 25, No. 1, 2009, 341-350, DOI: 10.1109/TPWRS.2009.2036463.
- 12. Sierociuk D., Estymacja i sterowanie dyskretnych układów dynamicznych ułamkowego rzędu opisanych w przestrzeni stanu, Ph.D. dissertation, The Institute of Control and Industrial Electronics, 2008.
- 13. Ullah M.Z., Soleymani F., Al-Fhaid A., An efficient matrix iteration for computing weighted Moore-Penrose inverse, “Applied Mathematics and Computation”, Vol. 226, 2014, 441-454, DOI: 10.1016/j.amc.2013.10.046.
- 14. Fill J.A., Fishkind D.E., The Moore-Penrose generalized inverse for sums of matrices, “SIAM Journal on Matrix Analysis and Applications”, Vol. 21, No. 2, 2000, 629-635, DOI: 10.1137/S0895479897329692.
- 15. Li Z., Xu Q., Wei Y., A note on stable perturbations of Moore-Penrose inverses, “Numerical Linear Algebra with Applications”, Vol. 20, No. 1, 2013, 18-26, DOI: 10.1002/nla.838.
- 16. Chen X., Zhao H., Sun H., Zhen S., Adaptive robust control based on Moore-Penrose generalized inverse for underactuated mechanical systems, “IEEE Access”, Vol. 7, 2019, 157 136-157 144, DOI: 10.1109/ACCESS.2019.2950211.
- 17. Kome C., Yazlik Y., Inverse and Moore-Penrose inverse of conditional matrices via convolution, “Journal of Applied Mathematics and Computing”, Vol. 70, No. 1, 2024, 417-433, DOI: 10.1007/s12190-023-01974-5.
- 18. Hunek W.P., A New Generalized θ-Inverse vs. Moore-Penrose Structure: A Comparative Control-Oriented Practical Investigation, “IEEE Access”, Vol. 9, 2021, 110 746-110 752, DOI: 10.1109/ACCESS.2021.3103479.
- 19. Zhang B., Li S., Chen X., Mao Y., A Novel Zeroing Neural Model for Solving Dynamic Matrix Moore-Penrose Inverse and Its Application to Visual Servoing Control of Manipulator, “IEEE Transactions on Instrumentation and Measurement”, Vol. 73, 2024, DOI: 10.1109/TIM.2024.3363782.
- 20. Hunek W.P., Latawiec K.J., A study on new right/left inverses of nonsquare polynomial matrices, “International Journal of Applied Mathematics and Computer Science”, Vol. 21, No. 2, 2011, 331-348, DOI: 10.2478/v10006-011-0025-y.
- 21. Ben-Israel A., Greville T.N., Generalized inverses: theory and applications, Springer Science & Business Media, 2003, DOI: 10.1007/b97366.
- 22. Hunek W.P., Wach Ł., A new stability theory for Grünwald-Letnikov inverse model control in the multivariable LTI fractional-order framework, “Symmetry”, Vol. 11, No. 10, 2019, DOI: 10.3390/sym11101322.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12298724-6b78-4755-9b0e-de024ddb7412
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.