PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Natural filling and systematic roof control technology for gob-side entry retaining in steep coal seams

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Naturalne podsadzanie stropu i metoda systemowego prowadzenia stropu przy utrzymaniu chodników przewozowych od strony zrobów w nachylonych pokładach węgla
Języki publikacji
EN
Abstrakty
EN
The technology for gob-side entry retaining in steep coal seams is still in the development stage. The analysis results of the caving structure of main roof, low influence of gateway’s stability because of long filling distance and weak dynamic effect of the gateway, and the low stress redistribution environment indicate that using this technology in steep coal seams has significant advantages. Moreover, to reinforce the waste rock and the soft floor and to better guard against the impact of the waste rock during natural filling, a rock blocking device and grouting reinforcement method were invented, and theoretical calculations result show that the blocking device has high safety factor. In addition, we also developed a set of hydraulic support devices for use in the strengthening support zone. Furthermore, because the retaining gateway was a systematic project, the selection of the size and shape of the gateway cross section and its support method during the initial driving stage is a key step. Thus, first, a section the size of bottom width and roof height of a new gateway was determined to meet any related requirements. Then, according to the cross sections of 75 statistical gateways and the support technique, it chosen a trapezoidal cross section when the dip of the coal seam is […], a special and an inclined arch cross section when […]. Eventually, a support system of bolts and cables combined with steel mesh and steel belts was provided. The support system used optimized material and improved parameters, can enhanced the self-bearing ability of the surrounding coal and rock masses.
PL
Technologia utrzymywania chodników w obszarze zrobów w nachylonych pokładach węgla jest nadal rozwijana i udoskonalana. Jej zastosowanie prowadzi do zawału głównego stropu, który jednak w nieznacznym tylko stopniu wpływa na stabilność chodników z uwagi na odległość obszaru podsadzania, podczas gdy oddziaływania dynamiczne na chodniki przewozowe będą niewielkie. Powstały rozkład naprężeń wskazuje, że zastosowanie tej technologii w stromych pokładach przyniesie znaczne korzyści. Ponadto, w celu wzmocnienia warstw skał płonnych i miękkich warstw spągowych, a także dla lepszego zabezpieczenia przed skutkami ruchów skał płonnych w trakcie podsadzania, opracowano urządzenia blokujące ruch skał wraz ze wzmocnieniem cementowym. Obliczenia teoretyczne wskazują że zastosowana blokada ruchów skał charakteryzuje się wysokim wskaźnikiem bezpieczeństwa. Ponadto, opracowano także zestaw wsporników hydraulicznych dla dodatkowego wzmocnienia strefy podsadzania. Z uwagi na to, że zachowanie chodnika przewozowego jest działaniem stałym i systematycznym, dobór wymiarów i kształtu przekroju chodnika oraz metody jego stabilizacji jest sprawą kluczową już na etapie drążenia chodnika. W kroku pierwszym określono więc szerokość chodnika w jego dolnej części oraz wysokość stropu zgodnie z odpowiednimi wymogami. Następnie w oparciu o wymiary przekrojów 75 statystycznych chodników oraz uwzględniając dostępne techniki stabilizacji stropu wybrano przekrój trapezoidalny gdy nachylenie pokładu węgla mieści się w przedziale […], zaś dla kątów nachylenia w przedziale […] wybrano nachylony profil łukowy. W etapie końcowym zastosowano układ stabilizujący oparty na kotwach i kablach połączonych siatka stalową i stalowymi taśmami. W systemie stabilizującym wykorzystano zoptymalizowane materiały zapewniając lepsze parametry pracy, co korzystanie wpłynie na nośność warstw górotworu w otoczeniu pokładu węgla.
Rocznik
Strony
599--616
Opis fizyczny
Bibliogr. 41 poz., rys., wykr.
Twórcy
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
  • China Gezhouba Group Explosive Co., Ltd. Chongqing, 401121, China
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
autor
  • China Gezhouba Group Explosive Co., Ltd. Chongqing, 401121, China
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
autor
  • School of Ming and Geomatics Engineering, Heibei University of Engineering, Handan Hebei, 056038, China
autor
  • State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
autor
  • Technology Center, Sichuan Coal Industry Group Limited Liability Company, Chengdu, 610091, China
Bibliografia
  • [1] Cao S.G., Zo u D.J., Bai Y.J., Wen D.C., Yang Y.G., He P.J., 2012. Study on upward mining of sublevels for gob-side entry retaining in three-soft thin coal seam group. Journal of Mining and Safety Engineering 29, 3, 322-327.
  • [2] Cao S.G., 19 92. The analysis of mechanical construction of surrounding rocks in the pitching Seam. Journal of Chongqing University 15, 128-133.
  • [3] Deng Y., Wan g S., 2014. Feasibility analysis of gob-side entry retaining on a working face in a steep coal seam. International Journal of Mining Science and Technology 24, 4, 499-503.
  • [4] Gao F., Stea d D., Kang H., Wu Y., 2014. Discrete element modelling of deformation and damage of a roadway driven along an unstable goaf - a case study. International Journal of Coal Geology 127, 7, 100-110.
  • [5] Gou P.F., Xi n Y.J., 2011. Stability analysis of roof structure in pitched seam gateway. Journal of the China Coal Society 36, 10, 1607-1611.
  • [6] Hu B.N., Guo A.G., 2009. Testing study on coal waste back filling material compression simulation. Journal of the China Coal Society 34, 8, 1076-1080.
  • [7] Hua X.Z., 20 06. Development status and improved proposals on gob-side entry retaining support technology in China. Coal Science and Technology 34, 12, 78-81.
  • [8] Huang J.G., 2002. Structural Analysis for roof movement for steep coal seams. Journal of China University of Miting and Technology 31, 5, 411-414.
  • [9] Huang Q.X., Dong B.L., Chen G.H., Ran L.M., Huang Z.P., 2006. Failure mechanism of entry in steep soft seam and bolting design. Journal of Mining and Safety Engineering 23, 3, 333-336.
  • [10] Itasca, 2013 . 3DEC-3 dimensional distinct element code. Itasca Consulting Group Inc., Minneapolis.
  • [11] Jiang Z.Q., Ji L.J., Zuo R.S., 2001. Research on mechanism of crushing-compression of coal waste. Journal of China University of Mining and Technology 30, 2, 139-142.
  • [12] Wang J.A., J iao J.L., 2016. Criteria of support stability in mining of steeply inclined thick coal seam. International Journal of Rock Mechanics and Mining Sciences 82, 22-35.
  • [13] Li X.S., Xu J.L., Zhu W.B., Zhuang D.L., 2008. Simulation of backfill compaction character by particle flow code. Journal of the China Coal Society 33, 4, 373-377.
  • [14] Li X., Ju M. , Yao Q., Zhou J., Chong Z., 2016. Numerical investigation of the effect of the location of critical rock block fracture on crack evolution in a gob-side filling wall. Rock Mechanics and Rock Engineering 49, 3, 1041-1058.
  • [15] Li Y.M., Liu C.Y., Li X.M., Zhang N.B., 2010. Roof control effect for gangue backfilling of goaf in thin steeply inclined seam under water body. Journal of the China Coal Society 35, 9, 1419-1424.
  • [16] Miao X.X., Z hang J.X., 2007. Analysis of strata behavior in the process of coal mining by gangue backfilling. Journal of Mining and Safety Engineering 24, 4, 379-382.
  • [17] Mohammadi M. , Hossaini M.F., Bagloo H., 2017. Rock bolt supporting factor: rock bolting capability of rock mass. Bulletin of Engineering Geology and the Environment 76, 1, 231-239.
  • [18] Shabanimashcool M., Li C.C., 2012. Numerical modelling of longwall mining and stability analysis of the gates in a coal mine. International Journal of Rock Mechanics and Mining Sciences 51, 4, 24-34.
  • [19] Shabanimashcool M., Li C.C., 2013. A numerical study of stress changes in barrier pillars and a border area in a longwall coal mine. International Journal of Coal Geology 106, 106, 39-47.
  • [20] Su Q.Z., Hao H.J., 2002. Research on adaptability of deformation characteristics of roof and packing compressibility. Journal of Jiaozuo Institute of Technology 21, 5, 321-323.
  • [21] Tan Y.L., Yu F.H., Ning J.G., Zhao T.B., 2015. Design and construction of entry retaining wall along a gob side dunder hard roof stratum. International Journal of Rock Mechanics and Mining Sciences 77, 115-121.
  • [22] Tu H., Tu S. , Yuan Y., Wang F., Bai Q., 2015. Present situation of fully mechanized mining technology for steeply inclined coal seams in China. Arabian Journal of Geosciences 8, 7, 4485-4494.
  • [23] Verma Amit K ., Singh T.N., 2010. Modeling of a jointed rock mass under triaxial conditions. Arabian Journal of Geosciences 3, 1, 91-103.
  • [24] Wang H., Jiang Y., Xue S., Shen B., Wang C., Lv J., Yang T., 2015a. Assessment of excavation damaged zone around roadways under dynamic pressure induced by an active mining process. International Journal of Rock Mechanics and Mining Sciences 77, 265-277.
  • [25] Wang M., Bai J., Li W., Wang X., Cao S., 2015b. Failure mechanism and control of deep gob-side entry. Arabian Journal of Geosciences 8, 11, 9117-9131.
  • [26] Wu Y.P., Xie P.S., Ren S.G., 2010a. Analysis of asymmetric structure around coal face of steeply dipping seam mining. Journal of the China Coal Society 35, 2, 182-184.
  • [27] Wu Y.P., Xie P.S., Wang H.W., Ren S.G., 2010b. Incline masonry structure around the coal face of steeply dipping seam mining. Journal of the China Coal Society 35, 8, 1252-1256.
  • [28] Wu Y.P., Liu K.Z., Yun D.F., Xie P.S., Wang H.W., 2014. Research progress on the safe and efficient mining technology of steeply dipping seam. Journal of the China Coal Society 39, 8, 1611-1618.
  • [29] Wu Y., Yun D ., Zhang M., 2000. Study on the elementary problems of full-mechanized coal mining in greater pitching seam. Journal of the China Coal Society 25, 5, 465-468.
  • [30] Xin Y.J., Go u P.F., Yun D.F., Liu H.Y., 2012. Instability characteristics and support analysis on surrounding rock of soft rock gateway in high-pitched seam. Journal of Mining and Safety Engineering 29, 5, 637-643.
  • [31] Yang H., Cao S., Li Y., Sun C., Guo P., 2015. Soft roof failure mechanism and supporting method for gob-Side entry retaining. Minerals 5, 4, 707-722.
  • [32] Yang H., Cao S., Wang S., Fan Y., Wang S., Chen X., 2016a. Adaptation assessment of gob-side entry retaining based on geological factors. Engineering Geology 209, 143-151.
  • [33] Yang H., Cao S., Li Y., Fan Y., Wang S., Chen X., 2016b. Assessment of excavation broken zone around gateways under various geological conditions: a case study in Sichuan Province, China. Minerals 6, 3, 72.
  • [34] Yang J., Cao S., Li X., 2013. Failure laws of narrow pillar and asymmetric control technique of gob-side entry driving in island coal face. International Journal of Mining Science and Technology 23, 2, 267-272.
  • [35] Yang S.S., 2 010. Study on the surrounding rock control theory of roadway in coal mine. Journal of the China Coal Society 35, 11, 1842-1853.
  • [36] Yavuz H., 20 04. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines. International Journal of Rock Mechanics and Mining Sciences 41, 2, 193-205.
  • [37] Zhang J.X., Miao X.X., Guo G. L., 2009. Development status of backfilling technology using raw waste in coal mining. Journal of Mining and Safety Engineering 26, 4, 395-401.
  • [38] Zhang Y., Tang J., Shen P., Zhao Z., 2015. Flexible support technique for the weak roof and floor of a roadway in a coal seam with a medium-thickness and a large inclined angle. Modern Tunnelling Technology 52, 2, 198-204.
  • [39] Zhang Y., Ta ng J., Xiao D., Sun L., Zhang W., 2014. Spontaneous caving and gob-side entry retaining of thin seam with large inclined angle. International Journal of Mining Science and Technology 24, 4, 441-445.
  • [40] Zheng X.G., Zhang N., Xue F., 2012. Study on stress distribution law in anchoring section of prestressed bolt. Journal of Mining and Safety Engineering 29, 3, 365-370.
  • [41] Zhou B., Xu J., Zhao M., Zeng Q., 2012. Stability study on naturally filling body in gob-side entry retaining. International Journal of Mining Science and Technology 22, 3, 423-427.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12292e77-92a8-486c-93c9-a0bf59617fe9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.