PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

GPU-optimized Direct Fourier Method for On-line Tomography

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
On-line monitoring of synchrotron 3D-imaging experiments requires very fast tomographic reconstruction. Direct Fourier methods (DFM) have the potential to be faster than standard Filtered Backprojection. We have evaluated multiple DFMs using various interpolation techniques. We compared reconstruction quality and studied the parallelization potential. A method using Direct Fourier Inversion (DFI) and a sinc-based interpolation was selected and parallelized for execution on GPUs. Several optimization steps were considered to boost the performance. Finally we evaluated the achieved performance for the latest generation of GPUs from NVIDIA and AMD. The results show that tomographic reconstruction with a throughput of more than 1.5 GB/sec on a single GPU is possible.
Wydawca
Rocznik
Strony
245--258
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
  • Institute for Data Processing and Electronics Karlsruhe Institute of Technology (KIT)
autor
  • Department of Automation and Computer Systems Tomsk Polytechnic University (TPU
  • Institute for Data Processing and Electronics Karlsruhe Institute of Technology (KIT)
  • Institute for Data Processing and Electronics Karlsruhe Institute of Technology (KIT)
autor
  • Institute for Data Processing and Electronics Karlsruhe Institute of Technology (KIT)
autor
  • European Synchrotron Radiation Facility
autor
  • Institute for Data Processing and Electronics Karlsruhe Institute of Technology (KIT)
  • Institute for Data Processing and Electronics Karlsruhe Institute of Technology (KIT)
autor
  • Department of Automation and Computer Systems Tomsk Polytechnic University (TPU
Bibliografia
  • [1] Beatty, P. J., Nishimura, D. G., Pauly, J. M.: Rapid gridding reconstruction with a minimal oversampling ratio, Medical Imaging, IEEE Transactions on, 24(6), 2005, 799–808.
  • [2] Chilingaryan, S., Mirone, A., Hammersley, A., Ferrero, C., Helfen, L., Kopmann, A., dos Santos Rolo, T., Vagovic, P.: A GPU-based architecture for real-time data assessment at synchrotron experiments, Nuclear Science, IEEE Transactions on, 58(4), 2011, 1447–1455.
  • [3] Choi, H., Munson, D. C.: Direct-Fourier reconstruction in tomography and synthetic aperture radar, International journal of imaging systems and technology, 9(1), 1998, 1–13.
  • [4] Gottlieb, D., Gustafsson, B., Forss´en, P.: On the direct Fourier method for computer tomography, IEEE Trans. Med. Imaging, 19(3), 2000, 223–232.
  • [5] Grangeat, P.: Tomography, ISTE, Wiley, 2013, ISBN 9781118617670.
  • [6] Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM, Pattern Recognition (ICPR), 2010 20th International Conference on, IEEE, 2010.
  • [7] Hsieh, J.: Computed Tomography: Principles, Design, Artifacts, and Recent Advances, Progress in Biomedical Optics and Imaging, SPIE Press, 2003, ISBN 9780819444257.
  • [8] Jackson, J. I., Meyer, C. H., Nishimura, D. G., Macovski, A.: Selection of a convolution function for Fourier inversion using gridding [computerised tomography application], Medical Imaging, IEEE Transactions on, 10(3), 1991, 473–478.
  • [9] Kirk, D.: NVIDIA CUDA software and GPU parallel computing architecture, ISMM, 7, 2007.
  • [10] Lehmann, T. M., Gonner, C., Spitzer, K.: Survey: Interpolation methods in medical image processing, Medical Imaging, IEEE Transactions on, 18(11), 1999, 1049–1075.
  • [11] Marone, F., Stampanoni, M.: Regridding reconstruction algorithm for real-time tomographic imaging, Journal of synchrotron radiation, 19(6), 2012, 1029–1037.
  • [12] Mersereau, R. M., Oppenheim, A. V.: Digital reconstruction of multidimensional signals from their projections, Proceedings of the IEEE, 62(10), 1974, 1319–1338.
  • [13] Mirone, A., Wilcke, R., Hammersley, A., Ferrero, C.: PyHST–High Speed Tomographic Reconstruction, 2010.
  • [14] Natterer, F., W-bbeling, F.: Mathematical Methods in Image Reconstruction, Mathematical Modeling and Computation, Society for Industrial and Applied Mathematics, 2001, ISBN 9780898716221.
  • [15] Nvidia, C.: CUFFT library, 2010.
  • [16] O’sullivan, J.: A fast sinc function gridding algorithmfor Fourier inversion in computer tomography, Medical Imaging, IEEE Transactions on, 4(4), 1985, 200–207.
  • [17] Palenstijn, W. J., Batenburg, K. J., Sijbers, J.: The ASTRA Tomography Toolbox, 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE, 2013, 2013.
  • [18] Rivers, M. L.: tomoRecon: High-speed tomography reconstruction on workstations using multi-threading, SPIE Optical Engineering+ Applications, International Society for Optics and Photonics, 2012.
  • [19] Roerdink, J. B., Westenberg, M. A.: Data-parallel tomographic reconstruction: a comparison of filtered backprojection and direct Fourier reconstruction, Parallel Computing, 24(14), 1998, 2129–2142.
  • [20] Schomberg, H., Timmer, J.: The gridding method for image reconstruction by Fourier transformation, Medical Imaging, IEEE Transactions on, 14(3), 1995, 596–607.
  • [21] Shepp, L. A., Logan, B. F.: The Fourier reconstruction of a head section, Nuclear Science, IEEE Transactions on, 21(3), 1974, 21–43.
  • [22] Stark, H., Wengrovitz, M.: Comments and corrections on the use of polar sampling theorems in CT, Acoustics, Speech and Signal Processing, IEEE Transactions on, 31(5), 1983, 1329–1331.
  • [23] Stark, H., Woods, J. W., Paul, I., Hingorani, R.: Direct Fourier reconstruction in computer tomography, Acoustics, Speech and Signal Processing, IEEE Transactions on, 29(2), 1981, 237–245.
  • [24] Stone, J. E., Gohara, D., Shi, G.: OpenCL: A parallel programming standard for heterogeneous computing systems, Computing in science & engineering, 12(3), 2010, 66.
  • [25] Toft, P. A., Sørensen, J. A.: The Radon transform-theory and implementation, Ph.D. Thesis, Technical University of DenmarkDanmarks Tekniske Universitet, Department of Informatics and Mathematical ModelingInstitut for Informatik og Matematisk Modellering, 1996.
  • [26] Vogelgesang, M., Chilingaryan, S., dos Santos Rolo, T., Kopmann, A.: Ufo: A scalable gpu-based image processing framework for on-line monitoring, High Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on, IEEE, 2012.
  • [27] Waldén, J.: Analysis of the direct Fourier method for computer tomography, Medical Imaging, IEEE Transactions on, 19(3), 2000, 211–222.
  • [28] Weber, M., J¨ager, I., Baumbach, T., Altapova, V., H¨anschke, D., dos Santos Rolo, T., Ershov, A., Helfen, L., Weber, M., Kopmann, A., et al.: UFO2–Ultra fast X-ray imaging of scientific processes with on-line assessment and data-driven process control.
  • [29] Zosso, D., Bach Cuadra, M., Thiran, J.-P.: Direct Fourier Tomographic Reconstruction Image-To-Image Filter, The Insight Journal, July-December, 2007, ITK Open Access / Open Review / Open Source Journal
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1228db8d-ced0-4821-9401-7288341bbb30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.