Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Thermomechanical low cycle fatigue behaviour of P91 steel used in power industry applications has been extensively investigated. The constitutive model of Armstrong-Frederick, extended with temperature rate effects, has been applied to describe the behaviour of the thermo-elastic-plastic material. The proposed model has been successfully implemented in simulation of low cycle fatigue of the examined steel in two different temperatures.
Czasopismo
Rocznik
Tom
Strony
595--606
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, Kraków, Poland
autor
- Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, Kraków, Poland
autor
- UTP University of Science and Technology, Faculty of Mechanical Engineering, Bydgoszcz, Poland
autor
- Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, Kraków, Poland
Bibliografia
- 1. Armstrong P.J., Frederick C.O., 1966, A mathematical representation of the multiaxial Bauschinger effect, Report RD/B/N731, CEGB, Central Electricity Generating Board, Berkeley, UK
- 2. Bernhart G., Moulinier G., Brucelle O., Delagnes D., 1999, High temperature low cycle fatigue behaviour of a martensite forging tool steel, International Journal of Fatigue, 21, 2, 179-186
- 3. Besson J., Cailletaud G., Chaboche J.L., Forest S., Bl´etry M., 2009, Non-Linear Mechanics of Materials, Springer
- 4. Chaboche J.L., 1997a, Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers, International Journal of Solids and Structures, 34, 18, 2239-2254
- 5. Chaboche J.L., 1997b, Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals, Bulletin de L’Academie Polonaise des Sciences, S´erie des Sciences Techniques, XXV, 1, 33-39
- 6. Chaboche J., 1986, Time independent constitutive theories for cyclic plasticity, International Journal of Plasticity, 2, 2, 149-188
- 7. Chaboche J.L., 2008, A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, 24, 1642-1693
- 8. Chaboche J.L., Cailletaud, G., 1996, Integration methods for complex plastic constitutive equations, Computer Methods in Applied Mechanics and Engineering, 133, 125-155
- 9. Cailletaud G., Depoid C., Massinon D., Nicouleau-Bourles E., 2000, Elastoviscoplasticity with aging in aluminium alloys, [In:] Continuum Thermomechanics: The Art and Science of Modelling Material Behaviour (Paul Germain’s Anniversary Volume), Solid Mechanics and Its Applications, Kluwer Academic Publishers, 75-86
- 10. Duda P., Felkowski Ł., Dobrzański J., Purzyńska H., 2016, Modelling the strain and stress state under creep conditions in P91 steel, Materials at High Temperatures, 33, 85-93
- 11. Egner H., 2012, On the full coupling between thermo-plasticity and thermo-damage in thermodynamic modeling of dissipative materials, International Journal of Solids and Structures, 49, 279-288
- 12. Egner H., Egner W., 2015, Classification of constitutive equations for dissipative materialsgeneral review, [In:] Mechanics of Anisotropic Materials, J.J. Skrzypek and A.W. Ganczarski (Edit.), 247-294, Springer
- 13. Egner H., Egner W., 2014, Modeling of a tempered martensitic hot work tool steel behavior in the presence of thermo-viscoplastic coupling, International Journal of Plasticity, 57, 77-91
- 14. Ganczarski A.W., Egner H., Muc A., Skrzypek J.J., 2010, Constitutive models for analysis and design of multifunctional technological materials, [In:] Innovative Technological Materials. Structural Properties by Neutrons, Synchrotron Radiation and Modelling, F. Rustichelli and J.J. Skrzypek (Edit.), 179-220, Springer
- 15. Ganczarski A., Skrzypek J., 2009, A study on coupled thermo-elasto-plastic-damage dissipative phenomena: models and application to some innovative materials, Journal of Thermal Stresses, 32, 698-751
- 16. Golański G., Mroziński S., 2013, Low cycle fatigue and cyclic softening behavior of martensitic cast steel, Engineering Failure Analysis, 12, 35, 692-702
- 17. Krajcinovic D., 1996, Damage Mechanics, Elsevier
- 18. Maugin G. A., 1999, The Thermomechanics of Nonlinear Irreversible Behaviors. An Introduction, World Scientific Series on Nonlinear Science, Series A, Vol. 27
- 19. Mebarki N., Delagnes D., Lamesle P., Delmas F., Levaillant C., 2004, Relationship between microstructure and mechanical properties of a 5%Cr tempered martensitic tool steel, Materials Science and Engineering A, 387-389, 1/2, 171-175
- 20. Mroziński S., Piotrowski M., 2013, Influence of temperature and loading program on the fatigue life of steel P91, Acta Mechanica et Automatica, 7, 2, 93-98
- 21. Ottosen N. S., Ristinmaa M., 2005, The Mechanics of Constitutive Modeling, Elsevier
- 22. Saanouni, K., 2012, Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation, ISTE/Wiley, London.
- 23. Saı K., 2011, Multi-mechanism models: Present state and future trends, International Journal of Plasticity, 27, 250-281
- 24. Seweryn A., Buczyński A., Szusta J., 2008, Damage accumulation model for low cycle fatigue, International Journal of Fatigue, 30, 756-765
- 25. SIMULIA Abaqus Extended Products, Abaqus 6.14-AP Isight 5.9, Dassault Systemes 1994-2014, http://www.3ds.com/products/simulia
- 26. Skrzypek J., Ganczarski A., 2015, Mechanics of Anisotropic Materials, Springer
- 27. Skrzypek J., Kuna-Ciskał H., 2003, Anisotropic elastic-brittle-damage and fracture models based on irreversible thermodynamics, [In:] Anisotropic Behaviour of Damaged Materials, J. Skrzypek and A. Ganczarski (Edit.), Lecture Notes in Applied and Computational Mechanics, vol. 9, 143-184, Springer
- 28. Szusta J., Seweryn A., 2010, Low-cycle fatigue model of damage accumulation – The strain approach, Engineering Fracture Mechanics, 77, 1604-1616
- 29. Taleb L., Cailletaud G., 2010, An updated version of the multimechanism model for cyclic plasticity, International Journal of Plasticity, 26, 859-874
- 30. Taleb L., Cailletaud G., Blaj L., 2006, Numerical simulation of complex ratcheting tests with a multi-mechanism model type, International Journal of Plasticity, 22, 724-753
- 31. Velay V., Bernhart G., Penazzi L., 2006, Cyclic behavior modeling of a tempered martensitic hot work tool steel, International Journal of Plasticity, 22, 459-496
- 32. Zhang Z., Bernhart G., Delagnes D., 2008, Cyclic behavior constitutive modeling of a tempered martensitic steel including ageing effect, International Journal of Fatigue, 30, 706-716
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1226e39b-732d-472e-ac99-d93026591a96