PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of cyclic thermo-elastic-plastic behaviour of P91 steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermomechanical low cycle fatigue behaviour of P91 steel used in power industry applications has been extensively investigated. The constitutive model of Armstrong-Frederick, extended with temperature rate effects, has been applied to describe the behaviour of the thermo-elastic-plastic material. The proposed model has been successfully implemented in simulation of low cycle fatigue of the examined steel in two different temperatures.
Rocznik
Strony
595--606
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, Kraków, Poland
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, Kraków, Poland
  • UTP University of Science and Technology, Faculty of Mechanical Engineering, Bydgoszcz, Poland
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, Kraków, Poland
Bibliografia
  • 1. Armstrong P.J., Frederick C.O., 1966, A mathematical representation of the multiaxial Bauschinger effect, Report RD/B/N731, CEGB, Central Electricity Generating Board, Berkeley, UK
  • 2. Bernhart G., Moulinier G., Brucelle O., Delagnes D., 1999, High temperature low cycle fatigue behaviour of a martensite forging tool steel, International Journal of Fatigue, 21, 2, 179-186
  • 3. Besson J., Cailletaud G., Chaboche J.L., Forest S., Bl´etry M., 2009, Non-Linear Mechanics of Materials, Springer
  • 4. Chaboche J.L., 1997a, Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers, International Journal of Solids and Structures, 34, 18, 2239-2254
  • 5. Chaboche J.L., 1997b, Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals, Bulletin de L’Academie Polonaise des Sciences, S´erie des Sciences Techniques, XXV, 1, 33-39
  • 6. Chaboche J., 1986, Time independent constitutive theories for cyclic plasticity, International Journal of Plasticity, 2, 2, 149-188
  • 7. Chaboche J.L., 2008, A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, 24, 1642-1693
  • 8. Chaboche J.L., Cailletaud, G., 1996, Integration methods for complex plastic constitutive equations, Computer Methods in Applied Mechanics and Engineering, 133, 125-155
  • 9. Cailletaud G., Depoid C., Massinon D., Nicouleau-Bourles E., 2000, Elastoviscoplasticity with aging in aluminium alloys, [In:] Continuum Thermomechanics: The Art and Science of Modelling Material Behaviour (Paul Germain’s Anniversary Volume), Solid Mechanics and Its Applications, Kluwer Academic Publishers, 75-86
  • 10. Duda P., Felkowski Ł., Dobrzański J., Purzyńska H., 2016, Modelling the strain and stress state under creep conditions in P91 steel, Materials at High Temperatures, 33, 85-93
  • 11. Egner H., 2012, On the full coupling between thermo-plasticity and thermo-damage in thermodynamic modeling of dissipative materials, International Journal of Solids and Structures, 49, 279-288
  • 12. Egner H., Egner W., 2015, Classification of constitutive equations for dissipative materialsgeneral review, [In:] Mechanics of Anisotropic Materials, J.J. Skrzypek and A.W. Ganczarski (Edit.), 247-294, Springer
  • 13. Egner H., Egner W., 2014, Modeling of a tempered martensitic hot work tool steel behavior in the presence of thermo-viscoplastic coupling, International Journal of Plasticity, 57, 77-91
  • 14. Ganczarski A.W., Egner H., Muc A., Skrzypek J.J., 2010, Constitutive models for analysis and design of multifunctional technological materials, [In:] Innovative Technological Materials. Structural Properties by Neutrons, Synchrotron Radiation and Modelling, F. Rustichelli and J.J. Skrzypek (Edit.), 179-220, Springer
  • 15. Ganczarski A., Skrzypek J., 2009, A study on coupled thermo-elasto-plastic-damage dissipative phenomena: models and application to some innovative materials, Journal of Thermal Stresses, 32, 698-751
  • 16. Golański G., Mroziński S., 2013, Low cycle fatigue and cyclic softening behavior of martensitic cast steel, Engineering Failure Analysis, 12, 35, 692-702
  • 17. Krajcinovic D., 1996, Damage Mechanics, Elsevier
  • 18. Maugin G. A., 1999, The Thermomechanics of Nonlinear Irreversible Behaviors. An Introduction, World Scientific Series on Nonlinear Science, Series A, Vol. 27
  • 19. Mebarki N., Delagnes D., Lamesle P., Delmas F., Levaillant C., 2004, Relationship between microstructure and mechanical properties of a 5%Cr tempered martensitic tool steel, Materials Science and Engineering A, 387-389, 1/2, 171-175
  • 20. Mroziński S., Piotrowski M., 2013, Influence of temperature and loading program on the fatigue life of steel P91, Acta Mechanica et Automatica, 7, 2, 93-98
  • 21. Ottosen N. S., Ristinmaa M., 2005, The Mechanics of Constitutive Modeling, Elsevier
  • 22. Saanouni, K., 2012, Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation, ISTE/Wiley, London.
  • 23. Saı K., 2011, Multi-mechanism models: Present state and future trends, International Journal of Plasticity, 27, 250-281
  • 24. Seweryn A., Buczyński A., Szusta J., 2008, Damage accumulation model for low cycle fatigue, International Journal of Fatigue, 30, 756-765
  • 25. SIMULIA Abaqus Extended Products, Abaqus 6.14-AP Isight 5.9, Dassault Systemes 1994-2014, http://www.3ds.com/products/simulia
  • 26. Skrzypek J., Ganczarski A., 2015, Mechanics of Anisotropic Materials, Springer
  • 27. Skrzypek J., Kuna-Ciskał H., 2003, Anisotropic elastic-brittle-damage and fracture models based on irreversible thermodynamics, [In:] Anisotropic Behaviour of Damaged Materials, J. Skrzypek and A. Ganczarski (Edit.), Lecture Notes in Applied and Computational Mechanics, vol. 9, 143-184, Springer
  • 28. Szusta J., Seweryn A., 2010, Low-cycle fatigue model of damage accumulation – The strain approach, Engineering Fracture Mechanics, 77, 1604-1616
  • 29. Taleb L., Cailletaud G., 2010, An updated version of the multimechanism model for cyclic plasticity, International Journal of Plasticity, 26, 859-874
  • 30. Taleb L., Cailletaud G., Blaj L., 2006, Numerical simulation of complex ratcheting tests with a multi-mechanism model type, International Journal of Plasticity, 22, 724-753
  • 31. Velay V., Bernhart G., Penazzi L., 2006, Cyclic behavior modeling of a tempered martensitic hot work tool steel, International Journal of Plasticity, 22, 459-496
  • 32. Zhang Z., Bernhart G., Delagnes D., 2008, Cyclic behavior constitutive modeling of a tempered martensitic steel including ageing effect, International Journal of Fatigue, 30, 706-716
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1226e39b-732d-472e-ac99-d93026591a96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.