PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Partially Evacuated Solar Still System under Jordan Climate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The pressing need for reducing the global warming effects from the emission of greenhouse gases necessitates the use of renewable energy where possible. Solar distillers are devices with a promising future. In this work, an experimental setup (solar distiller) was constructed and equipped with a mirror, basin, glass cover, compressor, sensors and controllers to study the partial evacuation effects on different solar distillation parameters and the production capacity under the Jordanian climate. The test rig was tested for three different water levels (1, 2 and 3 cm), and four pressure values (1, 0.9, 0.8 and 0.7 atm) under the Jordanian climate. The detailed experimental results strongly correlate with the results previously published in literature. The modifications performed on the system doubled the previously attained efficiency. These improvements in the solar distiller will favor the application of the vacuum pressure principle in many different applications, such as the water extraction from the atmospheric air.
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Civil Engineering Department, Applied Science University Private, Amman, Jordan
  • Mechanical Engineering Department, Jordan University, Amman, Jordan
  • Natural Resources and Chemical Engineering Department, Tafila Technical University, Tafila, Jordan
  • Mechanical Engineering Department, Tafila Technical University, Tafila, Jordan
  • Mechanical Engineering Department, Tafila Technical University, Tafila, Jordan
Bibliografia
  • 1. Al-Hussaini, H., Smith, I. K. 1994. Enhancing of solar still productivity using vacuum technology. Renewable Energy, 5(1–4), 532–536. doi:10.1016/0960–1481(94)90430–8.
  • 2. Al-Hussaini, H. Smith. I. K 1996. Enhancing of solar still productivity using vacuum technology. Fuel and Energy Abstracts, 37(1), 34. doi:10.1016/0140–6701(96)86723–3.
  • 3. Chung, H., Wibowo, S., Fajar, B., Shin, Y., Jeong, H. 2012. Study on low pressure evaporation of fresh water generation system model. Journal of Mechanical Science and Technology, 26(2), 421–426. doi:10.1007/s12206–011–1102–8.
  • 4. Gnanadason M. K., Kumar P. S., Jemilda G., Jasper S.S., 2012, Effect of nanofluids in a modified vacuum single basin solar still, International Journal of Scientific & Engineering Research Volume 3, Issue 1.
  • 5. Heyhat, M. M., Kowsary, F., Rashidi, A. M., Alem Varzane Esfehani, S., Amrollahi, A. 2012. Experimental investigation of turbulent flow and convective heat transfer characteristics of alumina water nanofluids in fully developed flow regime. International Communications in Heat and Mass Transfer, 39(8), 1272–1278. doi:10.1016/j.icheatmasstransfer.2012.06.024.
  • 6. Hemin Thakkar, Hitesh Panchal, 2015, Performance investigation on solar still with pcm and nanocomposites: experimental investigation, 2nd International Conference on Multidisciplinary Research and Practice, pp. 334–339.
  • 7. Kabeel, A. E., Omara, Z. M., Essa, F. A. 2014. Improving the performance of solar still by using nanofluids and providing vacuum. Energy Conversion and Management, 86, 268–274. doi:10.1016/j.enconman.2014.05.050.
  • 8. Manchanda, H., Kumar, M. 2017. Study of water desalination techniques and a review on active solar distillation methods. Environmental Progress & Sustainable Energy, 37(1), 444–464. doi:10.1002/ ep.12657.
  • 9. Muslih, I. M., Abdallah, S. M., Husain, W. A. 2010. Cost comparative study for new water distillation techniques by solar energy using. Applied Solar Energy, 46(1), 8–12. doi:10.3103/s0003701x10010032.
  • 10. Nafey, A., Abdelkader, M., Abdelmotalip, A., Mabrouk, A. . 2001. Solar still productivity enhancement. Energy Conversion and Management, 42(11), 1401–1408. doi:10.1016/s0196–8904(00)00107–2.
  • 11. Naim, M. M., Abd El Kawi, M. A. 2003. Nonconventional solar stills Part 1. Non-conventional solar stills with charcoal particles as absorber medium. Desalination, 153(1–3), 55–64. doi:10.1016/s0011–9164(02)01093–7.
  • 12. Omar B., Beithou N., Alawin A., Awad A., Abdelhadi Y. Al-Mofleh A., 2013, Experimental study of a vacuumed solar still system, International Journal of Applied Power Engineering (IJAPE), Vol. 2, No. 3, December 2013, pp. 96–104.
  • 13. Prakash, P., Velmurugan, V. 2015. Parameters influencing the productivity of solar stills – A review. Renewable and Sustainable Energy Reviews, 49, 585–609. doi:10.1016/j.rser.2015.04.136.
  • 14. Saidur, R., Leong, K. Y., Mohammad, H. A. 2011. A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews, 15(3), 1646–1668. doi:10.1016/j.rser.2010.11.035.
  • 15. Santos, A., Hernández, E., Ramírez, Z., 2017, Experimental Evaluation of a Single Slope Solar Still, TECCIENCIA, Vol. 12 No. 22, 63–71, 2017 DOI: http://dx.doi.org/10.18180/tecciencia.2017.22.7.
  • 16. Sharshir, S. W., Yang, N., Peng, G., Kabeel, A. E. 2016. Factors affecting solar stills productivity and improvement techniques: A detailed review. Applied Thermal Engineering, 100, 267–284. doi:10.1016/j.applthermaleng.2015.11.041.
  • 17. Tiwari, G. N., Singh, H. N., Tripathi, R. 2003. Present status of solar distillation. Solar Energy, 75(5), 367–373. doi:10.1016/j.solener.2003.07.005.
  • 18. Velmurugan, V., Srithar, K. 2011. Performance analysis of solar stills based on various factors affecting the productivity: A review. Renewable and Sustainable Energy Reviews, 15(2), 1294–1304. doi:10.1016/j.rser.2010.10.012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-121b0b12-74e4-4d95-93b5-b6b2af335500
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.