PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Heterogeneity of folding in Zechstein (Upper Permian) salt formations in the Kłodawa Salt Structure, central Poland

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analysis of folds carried out in the Kłodawa Salt Structure (central Poland) showed that the Upper Permian (Zechstein) siliciclastic-evaporitic bed sequence is heterogeneously folded, which resulted from differences in competence of rocks and from bed stratigraphy. Rock salt and potash-rich complexes of each Zechstein cycle are internally folded and contain multiple sheath folds, interpreted as the early sheath folds, originated during lateral flow of salt. These folds are superposed by upright sheath folds inside thick PZ1-PZ2 rock salt complexes. The lack of superposed folds in younger Zechstein salt complexes (PZ3-PZ4) and unconformities between the PZ1-PZ2 and PZ3-PZ4 beds imply that rock salt beds were internally folded prior to diapirism, independently in each salt bed. Two oldest rock salt beds welded during lateral flow and were folded together into upright sheath folds during the upward flow of salt. These superposed folds clustered into subordinary diapirs and pierced through the younger deposits. The latter sunk in salt masses and formed large-scale synclinoria, consisting of beds with fossil early tectonic and sedimentary structures.
Rocznik
Strony
565--576
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
  • Univer sity of Wrocław, Institute of Geological Sciences, M. Borna 9, 50-204 Wrocław, Poland
Bibliografia
  • 1. Adam, J., Krezsek, C., 2012. Basin-scale salt tectonic processes of the Laurentian Basin, Eastern Canada: insights from integrated regional 2D seismic interpretation and 4D physical experiments. Geological Society Special Publications, 363: 331-360.
  • 2. Alsop, G.I., Holdsworth, R.E., 2006. Sheath folds as discriminators of bulk strain type. Journal of Structural Geology, 28: 1588-1606.
  • 3. Alsop, G.I., Holdsworth, R.E., McCaffrey, K.J.W., 2007. Scale invariant sheath folds in salt, sediments and shear zones. Journal of Structural Geology, 29: 1585-1604.
  • 4. Balk, R., 1949. Structure of Grand Saiine salt dome, Van Zandt County, Texas. AAPG Bulletin, 33: 1791-1829.
  • 5. Burliga, S., 1994. Tension gashes in the Platy Dolomite from the south-western part of the Kłodawa Salt Dome - kinematic implications (in Polish with English summary). Przegląd Geologiczny, 42: 99-102.
  • 6. Burliga, S., 1996a. Implicaiions for early basin dynamics of the Mid-Polish Trough from deformational structures within salt deposits in central Poland. Geological Quarterly, 40 (2): 185-202.
  • 7. Burliga, S., 1996b. Kinematics within the Kłodawa salt diapir, central Poland. Geological Society Special Publications, 100: 11-21.
  • 8. Burliga, S., 1997. Evo i u tion of the Kłodawa Salt Dome (in Polish with English summary). In: Salt Tectonics in the Kuiavian Region (ed. S. Burliga): 1-12. WIND-J.Wojewoda, Wrocław.
  • 9. Burliga, S., 2007. Internal structure of subhorizontal bedded rock salt formation in the area of Sieroszowice - meso- and microstructural investigations. Gospodarka Surowcami Mineralnymi, 23: 51-64.
  • 10. Burliga, S., Janiów, S., Sadowski, A., 2005. Mining perspectives in the Kłodawa Salt Mine considering modern knowledge on tectonics of the Kłodawa Salt Structure (in Polish with English summary). Technika Poszukiwań Geologicznych Geosynoptyka i Geotermia, 4: 17-25.
  • 11. Burliga, S., Koyi, H.A., Chemia, Z., 2012. Analogue and numerical modeling of salt supply to a diapiric structure ris i ng above an active basement fault. Geological Society Special Publications, 363: 395-408.
  • 12. Callot, J.P., Letouzey J., Rigollet, C., 2006. Stringers Evolution in Salt Diapirs, Insight from Analogue Models. AAPG International Conference and Exhibition, Perth, Australia.
  • 13. Charysz, W., 1973. Zechstein stage of Younger Salts (Z3) in Kujawy region (in Polish with English summary). Prace Geologiczne PAN, 75.
  • 14. Dadlez, R., 1997. Epicontinental basins in Poland: Devonian to Cretaceous - relationship between the crystalline basement and sedimentary infill. Geological Quarterly, 41 (4): 419-432.
  • 15. Dadlez, R., 1998. Devonian to Cretaceous epicontinental basins in Poland: relationship between their development and structure (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 165: 17-30.
  • 16. Dadlez, R., Narkiewicz, M., Stephenson, R.A., Visser, M.T.M., Wees, J.-D. van, 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 252: 179-195.
  • 17. Davison, I., Bosence, D., Alsop, G.I., Al-Aawach, M.H., 1996. Deformation and sedimentation around active Miocene salt diapirs on the Tihama Plain, northwest Yemen. Geological Society Special Publications, 100: 23-39.
  • 18. Davison, I., Anderson, L., Nuttall, P., 2012. Salt deposition, loading and gravity drainage in the Campos and Santos salt basins. Geological Society Special Publications, 363: 159-173.
  • 19. Fiduk, J.C., Rowan, M.G., 2012. Analysis of folding and deformation within layered evaporites in Blocks BM-S-8 and -9, Santos Basin, Brasil. Geological Society Special Publications, 363: 471-487.
  • 20. Fort, X., Brun, J-P., 2012. Kinemati cs of regional salt flow in the northern Gulf of Mexico. Geological Society Special Publications, 363: 265-287.
  • 21. Hartwig, F., 1923. “Salt-Seismogramme”, ihre tektonische und praktische Bedeutung. Kali, 17: 193-197.
  • 22. Hoy, R.B., Foose, R.M., O'Neill, B.J., 1962. Structore of Winnfield salt dome, Winn Parish, Louisiana. AAPG Bulletin, 46: 1444-1459.
  • 23. Jackson, M.P.A., 1985. Natural strain in diapiric and glacial rock salt, with emphasis on Oakwood Dome, East Texas. University of Texas at Austin, Bureau of Economic Geology, Report of Investigations, 143.
  • 24. Jackson, M.P.A., Cornelius, R.R., 1987. Stepwise centrifuge modeling of the effects of differentional sedimentary loading on the formation of salt structures. In: Dynamical Geology of Salt (eds. I. Lerche and J.J. O'Brien): 163-253. Academic Press Inc.
  • 25. Jackson, M.P.A., Cornelius, R.R., Craig, C.H., Gansser, A., Stöcklin, J., Talbot, C.J., 1990. Salt diapirs of the Great Kavir, Central Iran. GSA Memoir, 177.
  • 26. Krzywiec, P., 2004. Triassic evo i uton of the Kłodawa Salt Structure: basement-controlled salt tectonics within the Mid-Polish Trough (Central Poland). Geological Quarterly, 48 (2): 123-134.
  • 27. Krzywiec, P., 2006. Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough - lateral variations in timing and structural style. Geological Quarterly, 50 (1): 151-168.
  • 28. Kupfer, D.H., 1962. Structure of Morton Salt Company mine, Weeks Island salt dome, Louisiana. AAPG Bulletin, 46: 1460-1467.
  • 29. Kupfer, D.H., 1976. Shear zones inside Gulf Coast salt stocks help to delineate spines of movement. AAPG Bulletin, 60: 1434-1447.
  • 30. Kupfer, D.H., 1989. Internal kinematics of salt diapirs: discussion. AAPG Bulletin, 73: 939-942.
  • 31. Lokhorst, A., ed., 1998. NW European Gas Atlas. Haarlem (NITG-TNO).
  • 32. Misiek, G., 1997. Stratigraphy of Zechstein deposits in the Kłodawa Salt Dome. In: Salt Tectonics in the Kuiavian Region (ed. S. Burliga): 20-23. WIND-J.Wojewoda, Wrocław.
  • 33. Quirk, D.G., Schřdt, N., Lassen, B., Ings, S.J., Hsu, D., Hirsch, K.K., Nicolai, C. von, 2012. Salt tectonics on passive margins: examples from Santos, Campos and Kwanza basi ns. Geological Society Special Publications, 363: 207-244.
  • 34. Richter-Bernburg, G., 1980. Salt tectonics, interior structures of salt bodies. Bulletin des Cenies de Recherches Exploration- Production Elf-Aquitaine, 4: 373-393.
  • 35. Schwerdtner, W.M., 1966. Preferred orientation of halite in a “salt seismogram”. In: Proceedings of the Second Symposium on Salt, Northern Ohio Geological Society, Cleveland: 70-84.
  • 36. Strozyk, F., Gent, H. van, Urai, J., Kukla, P.A., 2012. 3D seismic study of complex intra-salt deformaron: an example from the Upper Permian Zechstein 3 stringer, western Dutch offshore. Geological Society Special Publications, 363: 489-501.
  • 37. Talbot, C.J., Jackson, M.P.A., 1987. Internal kinematics of salt diapirs. AAPG Bulletin, 71: 1068-1093.
  • 38. Talbot, C.J., Jackson, M.P.A., 1989. Internal kinematics of salt diapirs: reply. AAPG Bulletin, 73: 946-950.
  • 39. Talbot, C.J., Jackson, M.P.A., 1991. A glossary of salt tectonics. University of Texas at Ausin, Bureau of Economic Geology, Geological Circular: 91-4.
  • 40. Tarka, R., 1992. Tectonics of some salt deposits in Poland based on mesostructural analysis (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 137.
  • 41. Tomassi-Morawiec, H., Czapowski, G., Borneman, O., Schramm, M., Tadych, J., Misiek, G., Kolonko, P., Janiów, S., 2007. Standard bromide proiiles for Zechstein salt deposits of Poland: salts of PZ2 (Z2) cycle in the Kłodawa salt mine. Gospodarka Surowcami Mineralnymi, 23: 103-116.
  • 42. Urai, J.L., 1983. Deformation of wet salt rocks. Ph.D. thesis, University of Utrecht.
  • 43. Werner, Z., Poborski, J., Orska, J., Bakowski, J., 1960. A geological and mining outline of the Kłodawa salt deposits (in Polish with English summary). Prace Instytutu Geologicznego, 30:467-494.
  • 44. Wilkosz, P., Burliga, S., Grzybowski, Ł., Kasprzyk, W., 2012. Comparison of internal structure and geomechanical properties in horizontally layered Zechstein rock salt. In: Mechanical Behavior of Salt VII (eds. P. Bérest, M. Ghoreychi, F. Hadj-Hassen and M. Tijani): 89-96. CRC Press, Tay i or and Francis Group, Leiden.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-121a9ee4-c291-4a09-8dea-4424cea4eab4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.