PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of molar ratio on mechanical properties and water resistance of citric acid modified magnesium sulfate cement

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnesium oxysulfate (MOS) cement is an ecological inorganic cement-based material. It has several excellent properties, such as high-volume stability, light weight, low thermal conductivity, and high temperature resistance. In this study, the influences of MgO : MgSO4 : H2O molar ratio on the mechanical properties and water resistance of modified MOS cement incorporating citric acid were investigated, and the change of pore structure and phase compositions were analyzed by mercury intrusion porosimetry (MIP), X-ray diffraction (XRD) and thermogravimetric (TG) analysis. The results show that when n(MgO) : n(MgSO4) or n(MgSO4) : n(H2O) is larger, the compressive strength and flexural strength of MOS cement paste increase. With the increase of MgO mole number, the softening coefficient of compressive strength decreases, while the softening coefficient and volume shrinkage of flexural strength increase. The total porosity and the most probable aperture of paste with n(MgO) : n(MgSO4) : n(H2O) = 8 : 1 : 20 are the largest, and smaller molar number of MgO or larger the mole number of H2O correspond to higher pore structure parameters of cement paste. In addition, with the increase of n(MgO)/n(MgSO4), the peak intensity of 517 phase is higher, while that of Mg(OH)2 is relatively weak. The content of 517 phase in MOS cement paste with the molar ratio of 10 : 1 : 16 reaches the maximum.
Rocznik
Strony
19--35
Opis fizyczny
Bibliogr. 37 poz., il., tab.
Twórcy
autor
  • Henan Open University, Zhengzhou, Henan, China
autor
  • Henan Open University, Zhengzhou, Henan, China
Bibliografia
  • [1] I. Mehdipour, K. Aditya, and K.H. Khayat, “Rheology, hydration, and strength evolution of interground limestone cement containing PCE dispersant and high volume supplementary cementitious materials”, Materials and Design, vol. 127, pp. 54-66, 2017, doi: 10.1016/j.matdes.2017.04.061.
  • [2] H. Manzano, J.S. Dolado, and A. Ayuela, “Elastic properties of the main species present in Portland cement pastes”, Acta Materialia, vol. 57, no. 5, pp. 1666-1674, 2009, doi: 10.1016/j.actamat.2008.12.007.
  • [3] K. Celik, C. Meral, A.P. Gursel, P.K. Mehta, A. Horvath, and P.J. Monteiro, “Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder”, Cement and Concrete Composites, vol. 56, pp. 59-72, 2015, doi: 10.1016/j.cemconcomp.2014.11.003.
  • [4] Y. Peng, and C. Unluer, “Analyzing the mechanical performance of fly ash-based geopolymer concrete with different machine learning techniques", Construction and Building Materials, vol. 316, art. no. 125785, 2022, doi: 10.1016/j.conbuildmat.2021.125785.
  • [5] Y. Nie, J. Shi, Z. He, B. Zhang, Y. Peng, and J. Lu, “Evaluation of high-volume fly ash (HVFA) concrete modified by metakaolin: Technical, economic and environmental analysis”, Powder Technology, vol. 397, art. no. 117121, 2022, doi: 10.1016/j.powtec.2022.117121.
  • [6] C. Chen, C. Wu, H. Zhang, Y. Chen, J. Niu, F. Chen, and H. Yu, “Effect of superplasticisers and their mechanisms of action on magnesium oxysulfate cement properties”, Advances in Cement Research, vol. 32, no. 5, pp. 225-233, 2020, doi: 10.1680/jadcr.18.00001.
  • [7] X. Luo, W. Fan, C. Li, Y. Wang, H. Yang, X. Liu, and S. Yang, “Effect of hydroxyacetic acid on the water resistance of magnesium oxychloride cement”, Construction and Building Materials, vol. 246, art. no. 118428, 2020, doi: 10.1016/j.conbuildmat.2020.118428.
  • [8] M.A. Haque, B. Chen, Y. Liu, S.F.A. Shah, and M.R. Ahmad, “Improvement of physico-mechanical and microstructural properties of magnesium phosphate cement composites comprising with Phosphogypsum”, Journal of Cleaner Production, vol. 261, art. no. 121268, 2020, doi: 10.1016/j.jclepro.2020.121268.
  • [9] T. Runčevski, C. Wu, H. Yu, B. Yang, and R.E. Dinnebier, “Structural characterization of a new magnesium oxysulfate hydrate cement phase and its surface reactions with atmospheric carbon dioxide”, Journal of the American Ceramic Society, vol. 96, no. 11, pp. 3609-3616, 2013, doi: 10.1111/jace.12556.
  • [10] Z.G. Li, Z.S. Ji, L.L. Jiang, and S.W. Yu, “Effect of additives on the properties of magnesium oxysulfate cement”, Journal of Intelligent and Fuzzy Systems, vol. 33, no. 5, pp. 3021-3025, 2017, doi: 10.3233/JIFS-169353.
  • [11] C. Wu, H. Yu, J. Dong, and L. Zheng, “Effects of Material Ration, Fly Ash, and Citric Acid on Magnesium Oxysulfate Cement”, ACI Materials Journal, vol. 111, no. 3, art. no. 291, 2014, doi: 10.14359/51686723.
  • [12] M. Ba, T. Xue, Z. He, H. Wang, and J. Liu, “Carbonation of magnesium oxysulfate cement and its influence on mechanical performance”, Construction and Building Materials, vol. 223, pp. 1030-1037, 2019, doi: 10.1016/j.conbuildmat.2019.07.341.
  • [13] C. Wu, H. Yu, H. Zhang, J. Dong, J. Wen, and Y. Tan, “Effects of phosphoric acid and phosphates on magnesium oxysulfate cement”, Materials and Structures, vol. 48, no. 4, pp. 907-917, 2015, doi: 10.1617/s11527-013-0202-6.
  • [14] Y. Peng and C. Unluer, “Development of alternative cementitious binders for 3D printing applications: A critical review of progress, advantages and challenges”, Composites Part B: Engineering, vol. 252, art. no. 110492, 2023, doi: 10.1016/j.compositesb.2022.110492.
  • [15] C. Wu, C. Chen, H. Zhang, Y. Tan, and H. Yu, “Preparation of magnesium oxysulfate cement using magnesium-rich by products from the production of lithium carbonate from salt lakes”, Construction and Building Materials, no. 172, pp. 597-607, 2018, doi: 10.1016/j.conbuildmat.2018.04.005.
  • [16] Y. Peng and C. Unluer, “Interpretable machine learning-based analysis of hydration and carbonation of carbonated reactive magnesia cement mixes”, Journal of Cleaner Production, vol. 434, art. no. 140054, 2024, doi: 10.1016/j.jclepro.2023.140054.
  • [17] W. Chengyou, Z. Huifang, and Y. Hongfa, “Preparation and properties of modified magnesium oxysulfate cement derived from waste sulfuric acid”, Advances in Cement Research, vol. 28, no. 3, pp. 178-188, 2016, doi: 10.1680/jadcr.15.00011.
  • [18] V. Barbieri, M. L. Gualtieri, T. Manfredini, and C. Siligardi, “Hydration kinetics and microstructural development of a magnesium oxysulfate cement modified by macromolecules”, Construction and Building Materials, vol. 248, art. no. 118624, 2020, doi: 10.1016/j.conbuildmat.2020.118624.
  • [19] L. Xiang, F. Liu, J. Li, and Y. Jin, “Hydrothermal formation and characterization of magnesium oxysulfate whiskers”, Materials Chemistry and Physics, vol. 87, no. 2-3, pp. 424-429, 2004, doi: 10.1016/j.matchemphys.2004.06.021.
  • [20] T. Demediuk and W. F. Cole, “A study of magnesium oxysulphates”, Australian Journal of Chemistry vol. 10, no. 3, pp. 287-294, 1957, doi: 10.1071/CH9570287.
  • [21] L. Urwongse and C. A. Sorrell, “Phase relations in magnesium oxysulfate cements”, Journal of the American Ceramic Society, vol. 63, no. 9-10, pp. 523-526, 1980, doi: 10.1111/j.1151-2916.1980.tb10757.x.
  • [22] J. Zhou and C. Wu, “Effects of nano-silica and silica fume on properties of magnesium oxysulfate cement”, Journal of the Ceramic Society of Japan, vol. 128, no. 3, pp. 164-173, 2020, doi: 10.2109/jcersj2.19192.
  • [23] Q. Li, L. Zhang, X. Gao, and J. Zhang, “Effect of pulverized fuel ash, ground granulated blast-furnace slag and CO2 curing on performance of magnesium oxysulfate cement”, Construction and Building Materials, vol. 230, art. no. 116990, 2020, doi: 10.1016/j.conbuildmat.2019.116990.
  • [24] J. Wen, H. Yu, Y. Li, C. Wu, and J. Dong, “Effects of citric acid on hydration process and mechanical properties of thermal decomposed magnesium oxychloride cement”, Journal of Wuhan University of Technology-Materials Science Edition, vol. 29, no. 1, pp. 114-118, 2014, doi: 10.1007/s11595-014-0877-8.
  • [25] N. Zhang, H. Yu, N. Wang, W. Gong, Y. Tan, and C. Wu, “Effects of low-and high-calcium fly ash on magnesium oxysulfate cement”, Construction and Building Materials, vol. 215, pp. 162-170, 2019, doi: 10.1016/j.conbuildmat.2019.04.185.
  • [26] H. Zhu, H. Yu, H. Ma, and S. Yang, “Uniaxial compressive stress-strain curves of magnesium oxysulfate cement concrete”, Construction and Building Materials, vol. 232, art. no. 117244, 2020, doi: 10.1016/j.conbuildmat.2019.117244.
  • [27] Y. Tan, H. Yu, W. Bi, N. Wang, and N. Zhang, “Hydration Behavior of Magnesium Oxysulfate Cement with Fly Ash via Electrochemical Impedance Spectroscopy”, Journal of Materials in Civil Engineering, vol. 31, no. 10, art. no. 04019237, 2019, doi: 10.1061/(ASCE)MT.1943-5533.0002827.
  • [28] N. Wang, H. Yu, W. Bi, Y. Tan, N. Zhang, C. Wu, H. Ma and S. Hua, “Effects of sodium citrate and citric acid on the properties of magnesium oxysulfate cement”, Construction and Building Materials, vol. 169, pp. 697-704, 2018, doi: 10.1016/j.conbuildmat.2018.02.208.
  • [29] T. Guo, H. Wang, H. Yang, X. Cai, Q. Ma, and S. Yang, “The mechanical properties of magnesium oxysulfate cement enhanced with 517 phase magnesium oxysulfate whiskers”, Construction and Building Materials, vol. 150, pp. 844-850, 2017, doi: 10.1016/j.conbuildmat.2017.06.024.
  • [30] C. Wu, W. Chen, H. Zhang, H. Yu, W. Zhang, N. Jiang, and L. Liu, “The hydration mechanism and performance of modified magnesium oxysulfate cement by tartaric acid”, Construction and Building Materials, vol. 144, pp. 516-524, 2017, doi: 10.1016/j.conbuildmat.2017.03.222.
  • [31] J.J. Beaudoin and V.S. Ramachandran, “Strength development in magnesium oxysulfate cement”, Cement and Concrete Research, vol. 8, no. 1, pp. 103-112, 1978, doi: 10.1016/0008-8846(78)90063-7.
  • [32] K. Liu, X. Cheng, C. Zhang, X. Gao, J. Zhuang, and X. Guo, “Evolution of pore structure of oil well cement slurry in suspension-solid transition stage”, Construction and Building Materials, vol. 214, pp. 382-398, 2019, doi: 10.1016/j.conbuildmat.2019.04.075.
  • [33] W. Li, Y. Xie, K. Ma, G. Long, H. Zhao, and Y. Peng, “Multiscale mechanical evolution of the interface between self-compacting concrete and steam-cured concrete”, Journal of Building Engineering, vol. 73, art. no. 106793, 2023, doi: 10.1016/j.jobe.2023.106793.
  • [34] W. Li, Y. Xie, K. Ma, G. Long, N. Li, W. Jiang, and Y. Peng, “Microstructure characteristics and evolution of the bonding interface between SCC and steam-cured concrete”, Construction and Building Materials, vol. 400, art. no. 132837, 2023, doi: 10.1016/j.conbuildmat.2023.132837.
  • [35] T. Yue, S.Y. Gao, L.X. Zhu, S.P. Xia, and K.B. Yu, “Crystal growth and crystal structure of magnesium oxysulfate 2MgSO4·Mg(OH)2·2H2O”, Journal of Molecular Structure, vol. 616, no. 1-3, pp. 247-252, 2002, doi: 10.1016/S0022-2860(02)00347-2.
  • [36] R.E. Dinnebier, M. Pannach, and D. Freyer, “3Mg(OH)2·MgSO4·8H2O: A Metastable Phase in the System Mg(OH)2-MgSO4-H2O”, Zeitschrift für Anorganische und Allgemeine Chemie, vol. 639, no. 10, pp. 1827-1833, 2013, doi: 10.1002/zaac.201300128.
  • [37] B. Bissonnette, P. Pierre, and M. Pigeon, “Influence of key parameters on drying shrinkage of cementitious materials”, Cement and Concrete Research, vol. 29, no. 10, pp. 1655-1662, 1999, doi: 10.1016/S0008-8846(99)00156-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12193399-7fd9-4a70-bf73-d3e932b23449
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.