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THE APPLICATION OF NEURAL NETWORKS
TO PROPERTY OPTIMIZATION OF POLYMER
COMPOSITIONS

Mariusz Fabijanski, Jacek Garbar ski

Summary

Preparation of multicomponent, non-flammable polymer-based mixture is time and labour consuming.
Many technical attempts have to be carried out in order to obtain the best possible components ratio.
That is why artificial neural networks were applied to extend the experimental field of research and to
obtain both acceptable mechanical and flame properties of the material. In this paper the results of learning
the neural networks as well as their performance at finding the optimum HIPS-based mixture are
presented.
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Sztuczne sieci neuronowe w doborze sktadu mieszaniny polimerowej

Streszczenie

Przygotowanie wieloskfadnikowej, trudnopalnej mieszaniny polimerowej o prognozowanych
wiasciwosciach mechanicznych jest pracochtonne. Wymaga wykonania wielu prob technologicznych
celem uzyskania prawidtowego sktadu mieszaniny polimerowej wielosktadnikowej z uwzglednieniem
kryterium wtasciwosci mechanicznych i palno$ciowych. Zastosowano zatem sztuczne sieci neuronowe
w procesie doboru sktadnikéw mieszaniny. Przedstawiono proces uczenia sie sztucznych sieci
neuronowych. Okreslono réwniez ich wydajnos¢ w ustalaniu optymalnego sktadu mieszaniny na
osnowie polistyrenu wysokoudarowego (HIPS).

Stowa kluczowe: sieci neuronowe, badania palnosci, optymalizacja

1. Data selection and testing the function
of the neural networks

In the course of developing a non-flammable polye@mposition it was
found that there was a contradiction between meachband flame properties.
Improving the former caused worsening of the ladted inversely. This caused
the necessity of using neural networks which wandtimize the content ratio in
such a way that the material would be both strovthftame resistant [1-3].
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It is known that the potential of neural networkglue to their parallel data
processing. They are widely applied in cases wherhe one hand it is difficult
to find the proper solution, on the other hand meaxperimental results are
known. The neural networks are treated as "blasglesp it means that it is of no
interest in what way they find the solutions [4-10]

In this paper the neural networks were appliedinnd the best possible
component ratio of the non-flammable HIPS-basedumix They enabled us to
extend the research area so that the desirablenpiegpof the material could be
found.

The obtained experimental results of testing thierad properties were used
for the learning process of the networks. After pinecess was completed, the
networks were used to process the virtual datd, ithghe one not obtained
experimentally.

In this paper the simulation was performed forftilewing two cases:

» when the mechanical and flame properties wereirthet data and the
component ratio was searched.

» when the component ratio was the input data aedptioperties were
searched.

In the first case the following parameters wereoidticed:

* as the input data:

— Oxygen index Ol
— Exposure S
— Illumination intensity E4
- Hardness
- Impact strength
— Young modulus
— Tensile strength
* as the results, the percentage ratio of:
- Mg(OH),
- HIPS
- SBS (Styrene-butadiene-styrene elastomer)
- SEBS (Styrene-ethylene-butylene-styrene elastomer)

In the second case, based on the percentage fr#tie fmur components, the
properties of the material were searched. In thesmof the experimental testing
it was found out that impact strength was criticalterms of mechanical
properties. The other three mentioned kept atakisfactory level [11, 12]. That
is why it was decided that only impact strength ldaepresent the mechanical
properties of the material. Due to the same reamty oxygen index and
illumination intensity E4 were selected as the espntative parameters of the
flame properties. The exposure S kept at a rembriagh level for all the
mixtures tested.
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2. Selection of the networkstype

The learning files were used to determine the mpptopriate networks type
for solving the given task. It means to find thetbgossible component ratio in
terms of mechanical and flame properties. The ndisvdype was selected
according to the procedure used in STATISTICA NeNetworks. In accordance
with the theory of neural networks the one of timapdest possible structure
should be selected as well as the simplest podsittring algorithm. It results in
a short learning time and minimized risk of locahima which, consequently,
leads to smaller deviation error. Based on thesgiptes and on the results
obtained from testing some types of networks, firtle MLP type and the
algorithm of backpropagation were selected. Figtirasd 2 show the schemes of
the networks.

Oxygen index Ol

Contentof:
Exposure 8§
S ) HIPS
lNumination intensity E4
Mg(CH
Impact strength 9(CH):
Tensile strength Ru SBS
SEBS

Youngmoduls E

Hardness HK

Fig. 1. Scheme of the MLP networks for the firsdeza
input data — properties, results — component ratio

Content of:
HIPS
. O Oxygeneindex Ol
Mg(OH)
: llluminationintesity E4
SBS
Impact strength
SEBS

Fig. 2. Scheme of the MLP networks for the secaaskc
input data — component ratio, results — properties
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3. Testing the function of the neural networks based
on the experimental data

3.1. Searching the component ratio when the properties are given

In this case, based on the known mechanical andeflproperties, the
component ratio was to be found. Input and outptd dre presented at Fig. 1. At

Figures 3-5 the plots comparing the experimentdl simulated results for the
two-component mixture are presented.
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Fig. 3. Plot of Mg(OHjcontent vs. impact strength
(light — experimental results, dark — output datef the networks)
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Fig. 4. Plot of Mg(OH)content vs. oxygen index Ol
(light — experimental results, dark — output daterf the networks)



The application of neural networks ...

71

40

20 v

Content Mg(OHj, %

i 10 20 30 40
lllumination intensity E4, Ix

Fig. 5. Plot of Mg(OH) content vs. illumination intensity E4 (light — expmental results,
dark — output data from the networks; both resalttsost create a common plot)

The above diagrams show that the experimental teesarde in good
accordance with the output data obtained from #ngal networks. It confirms

the proper selection of both the network type dredi¢arning algorithm.

In a similar manner the results obtained for trwemponent system were
analyzed. In this case the experimental and simailsets of mixtures for the same
component ratios were compared. At Figures 6, the8&omparison in the form
of bar charts is presented. The numbers denot®lbeing sets of mixtures:

1. experimental results — light:

HIPS — 35%; Mg(OH)— 50%; SBS — 15%

output data from the networks — dark:

HIPS- 34,08%; Mg(OH)— 50,04%; SBS — 15,08%
2. experimental results — light:

HIPS — 40,5%; Mg(OH)- 55%; SBS — 4,5%

output data from the networks — dark:

HIPS — 40,46%; Mg(OH)- 54,96%; SBS — 4,48%);
3. experimental results — light:

HIPS — 55%; Mg(OH)— 31,5%; SBS — 13,5%

output data from the networks — dark:

HIPS — 31,39%; Mg(OH)- 54,98%; SBS — 13,59%;
4. experimental results — light:

HIPS — 22,5%; Mg(OH)— 55%; SBS — 22,5%

output data from the networks — dark:

HIPS — 22,41%; Mg(OH)- 54,98%; SBS — 22,57%;
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It can be seen that for the three-component mixtbhee networks also

performed the simulation satisfactorily; the expemtal and simulated values are
very close.
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Fig. 6. Mg(OH} content for four sets of mixtures,
(experimental results — light output data from leéworks — dark)
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Fig. 7. HIPS content for four sets of mixtures
(experimental results — light, output data from mleéworks — dark)
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Fig. 8. SBS content for four sets of mixtures
(experimental results — light, output data from mleéworks — dark)

3.2. Searching the properties of the mixture
when the component ratioisgiven

In the second case the learning file had an indesecture in relation to the
first learning file, that is the component ratiosahe input data and the properties
of the material were the results. The input angwaiutlata are shown at Fig. 2.

Figures 9, 10, 11 show the comparison of experiademtd simulated results for
a two-component mixture.
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Fig. 9. Plot of impact strength vs. Mg(QGHtontent
(light — experimental results, dark — output daterf the networks)
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Fig. 10. Plot of oxygen index Ol vs. Mg(Offontent
(light — experimental results, dark — output daterf the networks)
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Fig. 11. Plot of illumination intensity E4 vs. MgkD: content (light — experimental results,
dark — output data from the networks both resuit®at create a common plot)

Summing up the results obtained for the two-compbonexture, it is clearly
seen that the networks performed correctly; thesrpental and simulated values
are very close.

As previously, a similar comparison was done fotheee-components
mixtures. It is illustrated at Figures 12, 13, A4.can be seen at Fig. 12 only for
impact strength some deviations between the expetath and simulated data
occur. For the remaining two parameters (Figs. i B4) the convergence is
almost perfect.
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Fig. 12. Impact strength for four sets of mixtures
(experimental results — light, output data from leéworks — dark)
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Fig. 13. Oxygen index for four sets of mixtures
(experimental results — light, output data from leéworks — dark)
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Fig. 14. lllumination intensity for four sets of xtiires
(experimental results — light, output data from mleéworks — dark)

4. Optimization of the component ratio in terms
of the best mechanical and flame properties

4.1. Searching the component ratio based on the desired properties
of material

After the learning process had been completedptbper function of the
networks was thoroughly tested. The testing proeedwt described in this paper
due to its limited volume, gave positive resultsichhmeans that the networks
performed correctly.

As the next step, the simulation for the virtuarirexperimental) input data
was performed. This extended the combination ofpmrant ratios above the
range obtained from the experiment [11, 12].

Table 1 presents the so called virtual input anghutudata (results) for the
previously mentioned first case (input — propert@stput — component ratio).
Based on the experimental results the virtual ingag selected in such a way that
the material should be potentially acceptableimseof all interesting properties.

As it has already been mentioned, the critical patars were: oxygen index
and impact strength. That is why in table 1 the &&mt Ol > 28 % and for impact
strength close to 5 are printed in bold. These detsoted with the numbers 40 to
45, fulfill the requirements. At the bar chart (Fi$) the bars related to those sets
are framed in bold. For the marked sets the ohddivigual material” is both non-
flammable and mechanically acceptable even thohgtlinpact strength is not
very high.
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Table 1. Simulation for the first case (input —geties, output — component ratio)

Input Output
No. | O, | S | E4 | HK, s't:“eﬁgf; ,\}gsa‘lgs Ru, | Mg(OH), | HIPS, | SBS,
0, ' 4 0, 0, 0,
% | Ixs | Ix |MPa|% 59 M Pa MPa % % %
1] 2 3 4 5 6 7 8 9 10
7 |209| 7941 39 | 488 872 3623 18 2474 | 7585 | 0,64
8 |21,4] 8674 6,63 | 70,2 | 8,29 4179 17,4 2761 | 72,79 | 0,44
12 |22,4|10448| 146 | 949 | 671 4605 17,4 3348 | 66,17 | 0,32
13 |22,8|11469| 19,7 | 97,8 | 551 4751 171 36,83 | 62,74 | 0,39
17 |23,8/13070| 29,6 | 105,8] 3,94 5742 16,4 42,70 | 56,60 | 0,61
21 | 25,4]15075] 38,4 | 116,4| 3,275 6931 155 4758 | 52,34 | 0,071
28 | 24,4]16122] 385 | 71,9| 6,32 5386 15,6 50,96 | 34,80 | 14,16
29 |24,8|16353 40,3 | 73,8| 6,12 5244 155 51,88 | 34,80 | 13,17
30 | 2572|16584] 421 | 75,7| 5,92 5102 15,4 5271 | 34,94 | 1217
31 | 25,6|16815| 439 | 77,6 | 5,72 4960 153 5342 | 3521 | 11,14
32 | 259|17046| 45,7 | 795| 552 4818 15,2 54,02 | 3544 | 10,27
33 |26,3|17277] 475 | 81,4| 532 4676 151 5448 | 36,08 | 9,16
34 |26,6|17508| 49,3 | 833 | 5,12 4534 15 5479 | 36,77 | 8,13
35 | 27 |17739] 51,1 | 852 | 4,92 4392 14,9 5497 | 37,80 | 6,93
36 |27,4|17970 52,9 | 87,1 | 472 4250 14,8 55,00 | 39,01 | 5,73
40 |283]18173| 54,6 | 875 | 4,59 4086 158 54,98 3993 | 524
41 |286|18123| 54,1 | 861 | 4,66 4059 159 55,00 3902 | 6,18
42 |289|18073| 535 | 847 | 4,73 4032 16 55,03 3763 | 7,53
43 |291]18023| 529 | 833 | 4,79 4006 16,1 55,00 3637 | 880
44 |293]17973| 523 | 819 | 486 3979 162 54,99 3481 | 10,33
45 |295]17923] 51,8 | 805 | 4,92 3953 164 54,99 3324 | 11,85
4
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Fig. 15. Component ratio for the virtual, non-flanigamixture obtained as the result of
simulation for the first learning set (input — pesfies, output — component ratio). Black —
Mg(OH)z content, white — HIPS content, grey — SBS conteratming — optimum sets
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4.2. Sear ching properties of the material
based on the component ratio

In this case, the experiment was repeated, ydtdrirtversed direction. As
the input data served the component ratio whilgtbperties of the material were
the result of the simulation which is presentedable 2 and at Figs. 16, 17, 18.
As previously, the best results are printed in oldable 2.

Table 2. Simulation for the second case (inputmpanent ratio, output — properties)

Input Output
No.| Mg(OH), HIPS, SBS, s{m;ﬁ] ol E4,
% % % o % Ix
1 2 3 5 6 7

7 24,74 75,85 0,64 11,95 19,27 0,02
8 27,61 72,79 0,44 18,89 18,12 0,05
12 33,48 66,17 0,32 7,80 21,12 4,66
13 36,83 62,74 0,39 38,99 17,43 1,87
17 42,70 56,60 0,61 5,76 22,47 16,69
21 47,58 52,34 0,07 3,49 25,48 39,10
28 50,96 34,80 14,16 6,51 26,21 40,81
29 51,88 34,80 13,17 7,46 29,09 47,08
30 52,71 34,94 12,17 7,42 29,83 50,90
3L 53,42 35,21 11,14 7,85 30,03 52,97
32 54,02 35,44 10,27 6,53 27,98 44,57
33 54,48 36,08 9,16 6,94 28,75 46,37
34 54,79 36,77 8,13 7,12 29,41 48,72
35 54,97 37,80 6,93 6,15 28,20 45,54
36 55,00 39,01 5,73 3,59 27,87 53,60
40 54,98 39,93 5,24 4,43 28,40 50,81
41 55,00 39,02 6,18 4,85 29,53 51,25
42 55,03 37,63 7,53 5,77 30,59 52,65
43 55,00 36,37 8,30 4,00 26,66 48,99
44 54,99 34,81 10,33 4,38 25,64 45,07
45 54,99 33,24 11,85 4,72 24,79 41,76

At Figure 16 it can be seen that impact strengthighest for sets 7, 8 and
13. It is related to the highest HIPS content anthée lowest Mg(OH)content
(see table 2) which, in turn, decreases the flamk samoke parameters (high
smoke emission, low oxygen index — see Figs. 1) ,A88the material is rejected
for Ol < 28%, sets 7, 8 and 13, in spite of higip&tt strength could not be taken
into account.
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Fig. 16. Impact strength for the sets of virtuatenial obtained as the result of simulation
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Fig. 17. Oxygen index for the sets of virtual meteobtained as the result of simulation
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Fig. 18. lllumination intensity for the sets oftual material obtained
as the result of simulation

It is known that oxygen index is mostly effected thg Mg(OH) content
which unfortunately decreases impact stress rerhbrkdhat is why, when
optimizing the properties of the material, this gmuand should be introduced
in a smallest possible amount which keeps the axygdex above 28%. This
occurs for the sets 29-31; 33-35; 42 which is sedfig. 17 (white bars).

The next parameter, important because of the snavkission is the
illumination intensity E4. The requirement is titatvalue should be above 20 Ix;
below this limit materials are regarded as dangeroecause of high smoke
emission. In the case of the interesting sets ndairkevhite it makes no problem
because E4 keeps over 40 Ix (Fig. 10). As it i<fithe E4 is also mostly effected
by Mg(OH), content.

The simple procedure of selecting the best possiisigonent ratio in terms
of impact strength, oxygen index and illuminationtensity is presented
in Fig. 19. Following the procedure it could beriduhat among the acceptable
sets (white bars in Figs. 4, 5, 6) the best wasatire denoted with number
31 (black bar).

It fulfills all requirements demanded for a nondfliaable, mechanically
strong material. The oxygen index is above thet loh28%, illumination intensity
E4 is much above the required minimum of 20 Ix, aetpstrength is the highest
of all the sets thus meeting the flame and smodjeirements.

It is worthwhile to notice that set 31 is very demito sets obtained as the
result of the simulation in the reverse directibhese are the sets 40-45 of the
following component contents:
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* 55% Mg(OH}

» 40-33% HIPS

» 5.25-11.6% SBS
while set 31 contents:

* 53.4% Mg(OH)

» 35.22% HIPS

» 11.4% SBS.

Input data:

P — [ Neural networks ]

content ‘,

Mg(OH); -
content

Results —mixture properties

S8S - - Ol [%)

content -E4 [l;(]

SEBS - .

oAl
content U [kJim?]
5 Are

Rejected simultanously YES

= -0l >28% Is
mixtures -E4>201 — U20,9Umax?

-U>5kJ/m? ?

!

The best mixture —

Fig. 19. The algorithm of selecting the best pdesiiomponent ratio

It can be concluded that the optimum componern fas been found which

on one hand is of practical importance, on the rothend confirms the
applicability of neural networks for solving this of tasks.

5. Conclusions

» The simulation performed by the networks allowadihding the optimum
component ratio of the non-flammable, HIPS-basedure.

» With the help of the neural networks it is possibd obtain a material
having desired properties. This method can be egpto new materials
development in general, not only to non-flammablgtmes described in this
paper.

* A practically applicable, non-flammable materiablbeen developed.
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