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S u m m a r y  

Preparation of multicomponent, non-flammable polymer-based mixture is time and labour consuming. 
Many  technical  attempts have to be carried out in order to obtain the best possible components ratio. 
That is why artificial neural networks were applied to extend the experimental field of research and to 
obtain both acceptable mechanical and flame properties of the material. In this paper the results of learning 
the neural networks as well as their performance at finding the optimum HIPS-based mixture are 
presented. 
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Sztuczne sieci neuronowe w doborze składu mieszaniny polimerowej 

S t r e s z c z e n i e  

Przygotowanie wieloskładnikowej, trudnopalnej mieszaniny polimerowej o prognozowanych 
właściwościach mechanicznych jest pracochłonne. Wymaga wykonania wielu prób technologicznych 
celem uzyskania prawidłowego składu mieszaniny polimerowej wieloskładnikowej z uwzględnieniem 
kryterium właściwości mechanicznych i palnościowych. Zastosowano zatem sztuczne sieci neuronowe 
w procesie doboru składników mieszaniny. Przedstawiono proces uczenia się sztucznych sieci 
neuronowych. Określono również ich wydajność w ustalaniu optymalnego składu mieszaniny na 
osnowie polistyrenu wysokoudarowego (HIPS). 

Słowa kluczowe: sieci neuronowe, badania palności, optymalizacja  

1. Data selection and testing the function  
of the neural networks 

In the course of developing a non-flammable polymer composition it was 
found that there was a contradiction between mechanical and flame properties. 
Improving the former caused worsening of the latter and inversely. This caused 
the necessity of using neural networks which would optimize the content ratio in 
such a way that the material would be both strong and flame resistant [1-3]. 
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It is known that the potential of neural networks is due to their parallel data 
processing. They are widely applied in cases where on the one hand it is difficult 
to find the proper solution, on the other hand – some experimental results are 
known. The neural networks are treated as "black boxes"; it means that it is  of no 
interest in what way they find the solutions [4-10].  

In this paper the neural networks were applied to find the best possible 
component ratio of the non-flammable HIPS-based mixture. They enabled us to 
extend the research area so that the desirable properties of the material could be 
found.  

The obtained experimental results of testing the material properties were used 
for the learning process of the networks. After the process was completed, the 
networks were used to process the virtual data, that is the one not obtained 
experimentally.  

In this paper the simulation was performed for the following two cases: 
• when the mechanical and flame properties were the input data and the 

component ratio was searched. 
• when the component ratio was the input data and the properties were 

searched. 
In the first case the following parameters were introduced: 
• as the input data: 

− Oxygen index OI 
− Exposure S 
− Illumination intensity E4 
− Hardness 
− Impact strength 
− Young modulus 
− Tensile strength 

• as the results, the percentage ratio of: 
− Mg(OH)2 
− HIPS 
− SBS (Styrene-butadiene-styrene elastomer) 
− SEBS (Styrene-ethylene-butylene-styrene elastomer) 

In the second case, based on the percentage ratio of the four components, the 
properties of the material were searched. In the course of the experimental testing 
it was found out that impact strength was critical in terms of mechanical 
properties. The other three mentioned kept at the satisfactory level [11, 12]. That 
is why it was decided that only impact strength would represent the mechanical 
properties of the material. Due to the same reason only oxygen index and 
illumination intensity E4 were selected as the representative parameters of the 
flame properties. The exposure S kept at a remarkably high level for all the 
mixtures tested. 
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2. Selection of the networks type 

The learning files were used to determine the most appropriate networks type 
for solving the given task. It means to find the best possible component ratio in 
terms of mechanical and flame properties. The networks type was selected 
according to the procedure used in STATISTICA Neural Networks. In accordance 
with the theory of neural networks the one of the simplest possible structure 
should be selected as well as the simplest possible learning algorithm. It results in 
a short learning time and minimized risk of local minima which, consequently, 
leads to smaller deviation error. Based on these principles and on the results 
obtained from testing some types of networks, finely the MLP type and the 
algorithm of backpropagation were selected. Figures 1 and 2 show the schemes of 
the networks. 

 

 
Fig. 1. Scheme of the MLP networks for the first case: 

input data – properties, results – component ratio 

 
Fig. 2. Scheme of the MLP networks for the second case: 

input data – component ratio, results – properties 
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3. Testing the function of the neural networks based  
on the experimental data 

3.1. Searching the component ratio when the properties are given 

In this case, based on the known mechanical and flame properties, the 
component ratio was to be found. Input and output data are presented at Fig. 1. At 
Figures 3-5 the plots comparing the experimental and simulated results for the 
two-component mixture are presented.  

 

 
Fig. 3. Plot of Mg(OH)2 content vs. impact strength 

(light – experimental results, dark – output data from the networks)  

 
Fig. 4. Plot of Mg(OH)2 content vs. oxygen index OI 

(light – experimental results, dark – output data from the networks) 
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Fig. 5. Plot of Mg(OH)2 content vs. illumination intensity E4 (light – experimental results,  

dark – output data from the networks; both results almost create a common plot) 

The above diagrams show that the experimental results are in good 
accordance with the output data obtained from the neural networks. It confirms 
the proper selection of both the network type and the learning algorithm. 

In a similar manner the results obtained for three-component system were 
analyzed. In this case the experimental and simulated sets of mixtures for the same 
component ratios were compared. At Figures 6, 7, 8 the comparison in the form 
of bar charts is presented. The numbers denote the following sets of mixtures: 
1.  experimental results – light:  
 HIPS – 35%; Mg(OH)2 – 50%; SBS – 15% 
 output data from the networks – dark:  
 HIPS- 34,08%; Mg(OH)2 – 50,04%; SBS – 15,08% 
2.  experimental results – light:  
 HIPS – 40,5%; Mg(OH)2 – 55%; SBS – 4,5% 
 output data from the networks – dark:  
 HIPS – 40,46%; Mg(OH)2 – 54,96%; SBS – 4,48%; 
3.  experimental results – light:  
 HIPS – 55%; Mg(OH)2 – 31,5%; SBS – 13,5% 
 output data from the networks – dark:  
 HIPS – 31,39%; Mg(OH)2 – 54,98%; SBS – 13,59%; 
4.  experimental results – light:  
 HIPS – 22,5%; Mg(OH)2 – 55%; SBS – 22,5% 
 output data from the networks – dark:  
 HIPS – 22,41%; Mg(OH)2 – 54,98%; SBS – 22,57%; 
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It can be seen that for the three-component mixture the networks also 
performed the simulation satisfactorily; the experimental and simulated values are 
very close. 

 

 
Fig. 6. Mg(OH)2 content for four sets of mixtures, 

 (experimental results – light output data from the networks – dark) 

 
Fig. 7. HIPS content for four sets of mixtures  

(experimental results – light, output data from the networks – dark) 
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Fig. 8. SBS content for four sets of mixtures  

(experimental results – light, output data from the networks – dark) 

3.2. Searching the properties of the mixture  
when the component ratio is given 

In the second case the learning file had an inversed structure in relation to the 
first learning file, that is the component ratio was the input data and the properties 
of the material were the results. The input and output data are shown at Fig. 2. 
Figures 9, 10, 11 show the comparison of experimental and simulated results for 
a two-component mixture.  

 

 
Fig. 9. Plot of impact strength vs. Mg(OH)2 content  

(light – experimental results, dark – output data from the networks) 
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Fig. 10. Plot of oxygen index OI vs. Mg(OH)2 content  

(light – experimental results, dark – output data from the networks) 

 
Fig. 11. Plot of illumination intensity E4 vs. Mg(OH)2 content (light – experimental results,  

dark – output data from the networks both results almost create a common plot) 

Summing up the results obtained for the two-component mixture, it is clearly 
seen that the networks performed correctly; the experimental and simulated values 
are very close. 

As previously, a similar comparison was done for a three-components 
mixtures. It is illustrated at Figures 12, 13, 14. As can be seen at Fig. 12 only for 
impact strength some deviations between the experimental and simulated data 
occur. For the remaining two parameters (Figs. 13 and 14) the convergence is 
almost perfect. 
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Fig. 12. Impact strength for four sets of mixtures  

(experimental results – light, output data from the networks – dark) 

 
Fig. 13. Oxygen index for four sets of mixtures  

(experimental results – light, output data from the networks – dark) 
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Fig. 14. Illumination intensity for four sets of mixtures  

(experimental results – light, output data from the networks – dark) 

4. Optimization of the component ratio in terms  
of the best mechanical and flame properties 

4.1. Searching the component ratio based on the desired properties  
of material 

After the learning process had been completed, the proper function of the 
networks was thoroughly tested. The testing procedure, not described in this paper 
due to its limited volume, gave positive results which means that the networks 
performed correctly. 

As the next step, the simulation for the virtual (non-experimental) input data 
was performed. This extended the combination of component ratios above the 
range obtained from the experiment [11, 12].  

Table 1 presents the so called virtual input and output data (results) for the 
previously mentioned first case (input – properties, output – component ratio). 
Based on the experimental results the virtual input was selected in such a way that 
the material should be potentially acceptable in terms of all interesting properties. 

As it has already been mentioned, the critical parameters were: oxygen index 
and impact strength. That is why in table 1 the sets for OI > 28 % and for impact 
strength close to 5 are printed in bold. These sets, denoted with the numbers 40 to 
45, fulfill the requirements. At the bar chart (Fig. 15) the bars related to those sets 
are framed in bold. For the marked sets the obtained “virtual material” is both non-
flammable and mechanically acceptable even though the impact strength is not 
very high. 
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Table 1. Simulation for the first case (input – properties, output – component ratio) 

No. 

Input Output 

OI, 
% 

S, 
lxs 

E4, 
lx 

HK, 
MPa 

Impact 
strength, 

kJ/m2 

Young 
Moduls, 

MPa 

Ru,  
MPa 

Mg(OH)2, 
% 

HIPS, 
% 

SBS, 
% 

1 2 3 4 5 6 7 8 9 10 
7 20,9 7941 3,9 48,8 8,72 3623 18 24,74 75,85 0,64 

8 21,4 8674 6,63 70,2 8,29 4179 17,4 27,61 72,79 0,44 

12 22,4 10448 14,6 94,9 6,71 4605 17,4 33,48 66,17 0,32 

13 22,8 11469 19,7 97,8 5,51 4751 17,1 36,83 62,74 0,39 

17 23,8 13070 29,6 105,8 3,94 5742 16,4 42,70 56,60 0,61 

21 25,4 15075 38,4 116,4 3,275 6931 15,5 47,58 52,34 0,071 

28 24,4 16122 38,5 71,9 6,32 5386 15,6 50,96 34,80 14,16 

29 24,8 16353 40,3 73,8 6,12 5244 15,5 51,88 34,80 13,17 

30 25,2 16584 42,1 75,7 5,92 5102 15,4 52,71 34,94 12,17 

31 25,6 16815 43,9 77,6 5,72 4960 15,3 53,42 35,21 11,14 

32 25,9 17046 45,7 79,5 5,52 4818 15,2 54,02 35,44 10,27 

33 26,3 17277 47,5 81,4 5,32 4676 15,1 54,48 36,08 9,16 

34 26,6 17508 49,3 83,3 5,12 4534 15 54,79 36,77 8,13 

35 27 17739 51,1 85,2 4,92 4392 14,9 54,97 37,80 6,93 

36 27,4 17970 52,9 87,1 4,72 4250 14,8 55,00 39,01 5,73 

40 28,3 18173 54,6 87,5 4,59 4086 15,8 54,98 39,93 5,24 
41 28,6 18123 54,1 86,1 4,66 4059 15,9 55,00 39,02 6,18 
42 28,9 18073 53,5 84,7 4,73 4032 16 55,03 37,63 7,53 
43 29,1 18023 52,9 83,3 4,79 4006 16,1 55,00 36,37 8,80 
44 29,3 17973 52,3 81,9 4,86 3979 16,2 54,99 34,81 10,33 
45 29,5 17923 51,8 80,5 4,92 3953 16,4 54,99 33,24 11,85 

 

 
Fig. 15. Component ratio for the virtual, non-flammable mixture obtained as the result of 
simulation for the first learning set (input – properties, output – component ratio). Black –

Mg(OH)2 content, white – HIPS content, grey – SBS content. Framing – optimum sets 
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4.2. Searching properties of the material  
based on the component ratio 

In this case, the experiment was repeated, yet in the inversed direction. As 
the input data served the component ratio while the properties of the material were 
the result of the simulation which is presented in Table 2 and at Figs. 16, 17, 18. 
As previously, the best results are printed in bold in Table 2. 

Table 2. Simulation for the second case (input – component ratio, output – properties) 

No. 

Input Output 

Mg(OH)2, 
% 

HIPS, 
% 

SBS, 
% 

Impact 
strength, 

kJ/m2 

OI, 
% 

E4, 
lx 

1 2 3 5 6 7 
7 24,74 75,85 0,64 11,95 19,27 0,02 
8 27,61 72,79 0,44 18,89 18,12 0,05 
12 33,48 66,17 0,32 7,80 21,12 4,66 
13 36,83 62,74 0,39 38,99 17,43 1,87 
17 42,70 56,60 0,61 5,76 22,47 16,69 
21 47,58 52,34 0,07 3,49 25,48 39,10 
28 50,96 34,80 14,16 6,51 26,21 40,81 
29 51,88 34,80 13,17 7,46 29,09 47,08 
30 52,71 34,94 12,17 7,42 29,83 50,90 
31 53,42 35,21 11,14 7,85 30,03 52,97 
32 54,02 35,44 10,27 6,53 27,98 44,57 
33 54,48 36,08 9,16 6,94 28,75 46,37 
34 54,79 36,77 8,13 7,12 29,41 48,72 
35 54,97 37,80 6,93 6,15 28,20 45,54 
36 55,00 39,01 5,73 3,59 27,87 53,60 
40 54,98 39,93 5,24 4,43 28,40 50,81 
41 55,00 39,02 6,18 4,85 29,53 51,25 
42 55,03 37,63 7,53 5,77 30,59 52,65 
43 55,00 36,37 8,80 4,00 26,66 48,99 
44 54,99 34,81 10,33 4,38 25,64 45,07 
45 54,99 33,24 11,85 4,72 24,79 41,76 

 
At Figure 16 it can be seen that impact strength is highest for sets 7, 8 and 

13. It is related to the highest HIPS content and to the lowest Mg(OH)2 content 
(see table 2) which, in turn, decreases the flame and smoke parameters (high 
smoke emission, low oxygen index – see Figs. 17, 18). As the material is rejected 
for OI < 28%, sets 7, 8 and 13, in spite of high impact strength could not be taken 
into account. 
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Fig. 16. Impact strength for the sets of virtual material obtained as the result of simulation 

 

 
Fig. 17. Oxygen index for the sets of virtual material obtained as the result of simulation 
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Fig. 18. Illumination intensity for the sets of virtual material obtained  

as the result of simulation 

It is known that oxygen index is mostly effected by the Mg(OH)2 content 
which unfortunately decreases impact stress remarkably. That is why, when 
optimizing the properties of the material, this compound should be introduced  
in a smallest possible amount which keeps the oxygen index above 28%. This 
occurs for the sets 29-31; 33-35; 42 which is seen at Fig. 17 (white bars). 

The next parameter, important because of the smoke emission is the 
illumination intensity E4. The requirement is that its value should be above 20 lx; 
below this limit materials are regarded as dangerous because of high smoke 
emission. In the case of the interesting sets marked in white it makes no problem 
because E4 keeps over 40 lx (Fig. 10). As it is for OI, the E4 is also mostly effected 
by Mg(OH)2 content. 

The simple procedure of selecting the best possible component ratio in terms 
of impact strength, oxygen index and illumination intensity is presented  
in Fig. 19. Following the procedure it could be found that among the acceptable 
sets (white bars in Figs. 4, 5, 6) the best was the one denoted with number  
31 (black bar). 

It fulfills all requirements demanded for a non-flammable, mechanically 
strong material. The oxygen index is above the limit of 28%, illumination intensity 
E4 is much above the required minimum of 20 lx, impact strength is the highest 
of all the sets thus meeting the flame and smoke requirements. 

It is worthwhile to notice that set 31 is very similar to sets obtained as the 
result of the simulation in the reverse direction. These are the sets 40-45 of the 
following component contents: 
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• 55% Mg(OH)2   
• 40-33% HIPS 
• 5.25-11.6% SBS 

while set 31 contents: 
• 53.4% Mg(OH)2   
• 35.22% HIPS 
• 11.4% SBS. 
 
 

 
Fig. 19. The algorithm of selecting the best possible component ratio 

It can be concluded that the optimum component ratio has been found which 
on one hand is of practical importance, on the other hand confirms the 
applicability of neural networks for solving this kind of tasks. 

5. Conclusions 

• The simulation performed by the networks allowed for finding the optimum 
component ratio of the non-flammable, HIPS-based mixture. 

• With the help of the neural networks it is possible to obtain a material 
having desired properties. This method can be applied to new materials 
development in general, not only to non-flammable mixtures described in this 
paper. 

• A practically applicable, non-flammable material has been developed.  
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