PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the possibility of modeling gas separators using computational fluid dynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Today, gas-liquid separators are usually used for the purification of gas mixtures from droplet liquid, and there are many designs of which. However, in order to improve the efficiency of their work, increase throughput, reduce mass and dimensions, they are constantly being improved. Usually, developing a new or improving an existing separator design is a long-term and relatively expensive process. Today, computer programs that implement the finite element method make it possible to speed up and reduce the cost of designing both a gas separator and other equipment. FloEFD program is one of these programs. However, it is more convenient during design to use one computer program that allows you to build 3D models (CAD) and in the same program to use a module for simulating the movement of gas and liquid flows (CFD). Such a program is SolidWorks with the FlowSimulation application module. As for the physical processes that occur during the operation of gas separators, they are quite complex, since a multiphase gas flow with an existing liquid phase is simulated. In the article, simulation modeling of the C-2-1 separator was carried out and the values and distributions of velocities and pressures in its various cross-sections were determined. Special attention was paid to the following cross-sections of the separator: along the axis of its inlet pipe; in the middle is the spigot of the blade screw; on a block of blinds. The difference in pressure at the outlet and inlet of the separator was determined, which is 20267 Pa. Based on the simulation results obtained, recommendations are given for further research and optimization of the separator design. The main parameter that characterizes the degree of separation of liquid from gas in the separator is the efficiency factor, which depends on the design of the separator, thermobaric conditions, parameters of the technological scheme, composition and physical and chemical properties of the gas-liquid flow. As a result of simulated model-ing of the separator, its efficiency coefficient was determined when it extracted droplet liquid from the gas-liquid mixture in its various fractions (from 0.01 to 0.1 mm). The efficiency factor is about 100%.
Wydawca
Rocznik
Tom
Strony
80--86
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Ivano-Frankivsk National Technical University of Oil and Gas 15 Karpatska st., 76019 Ivano-Frankivsk, Ukraine
  • Silesian University of Technology, Roosevelta 26, 41-800 Zabrze, Poland
  • Ivano-Frankivsk National Technical University of Oil and Gas 15 Karpatska st., 76019 Ivano-Frankivsk, Ukraine
  • Ivano-Frankivsk National Technical University of Oil and Gas 15 Karpatska st., 76019 Ivano-Frankivsk, Ukraine
autor
  • Ivano-Frankivsk National Technical University of Oil and Gas 15 Karpatska st., 76019 Ivano-Frankivsk, Ukraine
autor
  • Ivano-Frankivsk National Technical University of Oil and Gas 15 Karpatska st., 76019 Ivano-Frankivsk, Ukraine
Bibliografia
  • 1 V.V. Mykhailiuk, О.Ya. Faflei, V.О. Melnyk, І.Ya. Zakhara, A.R. Malyshev and H.Ya. Protsiuk, 2022. Modeling of a gas vertical grid separator. Scientific Bulletin of Ivano-Frank-ivsk National Technical University of Oil and Gas. 1(52), pp. 91-100. DOI:10.31471/1993-9965-2022-1(52)-91-100.
  • 2 L.M. Mil’shtein, Modernization of Oil and Gas Field Sepa-ration. Development of New-Generation Separation Units and Apparatuses, LAP Press, Saarbrücken, Germany (2012).
  • 3 C.S. Liu, 1994. Development and field test of separator in prying loading type gas collecting device. Natural Gas and Petroleum. 1236-40.
  • 4 V. Vijayan, M. Vivekanandan, R. Venkatesh, et al. 2021. CFD modeling and analysis of a two-phase vapor separa-tor. J Therm Anal Calorim 145, pp. 2719-27261. DOI:10.1007/s10973-020-09825-2.
  • 5 J. Kou, Z. Li. Numerical Simulation of New Axial Flow Gas-Liquid Separator. Processes. 2022; 10(1):64. DOI:10.3390/pr10010064.
  • 6 M.M. Liakh, E.V. Yuriev, V.M. Vakaliuk, Ya.V. Solonychnyi. 2008. Matematychna model separatsii hazoridynnoi su-mishi v separatori inertsiinoho typu. Rozvidka ta rozrobka naftovykh i hazovykh rodovyshch. № 1. pp. 67-73.
  • 7 Ye, Junxiang & Xu, Yanxia & Song, Xingfu & Yu, Jianguo. 2019. Novel conical section design for ultra-fine particles classification by a hydrocyclone. Chemical Engineering Research and Design. 144, pp. 135-149, DOI:10.1016/j.cherd.2019.02.006.
  • 8 Caie Zhang, & Wei, Dezhou & Cui, Baoyu & Li, Tianshu & Na. Luo, 2017. Effects of curvature radius on separation behaviors of the hydrocyclone with a tangent-circle inlet. Powder Technology. 305, 156-165, DOI:10.1016/j.po-wtec.2016.10.002.
  • 9 E. Mahmoud & Zhou, Ling & Shi, Weidong & Chen, Han. 2021. Performance evaluation of standard cyclone separa-tors by using CFD–DEM simulation with realistic bio-partic-ulate matter. Powder Technology. 385, pp. 357-374, DOI:10.1016/j.powtec.2021.03.006.
  • 10 B. Wiencke. 2011. Fundamental principles for sizing and design of gravity separators forindustrial refrigeration. In-ternational Journal of Refrigeration. 34, pp. 2092-2108. DOI:10.1016/j.ijrefrig.2011.06.011.
  • 11 Chu, Kaiwei, B. Wang, D.L. Xu, Y.X. Chen, Aibing Yu. 2011. CFD-DEM simulation of the gas – solid flow in a cyclone separator. Chemical Engineering Science. 66. pp. 834-847. DOI:10.1016/j.ces.2010.11.026.
  • 12 K. Pravin, A. Krupan, A. Dewasthale, A. Datar, A.S. Dalkilic, 2021. CFD analysis of cyclone separator used for fine filtration in separation industry. Case Studies in Thermal Engineering. 28. 101384. DOI:10.1016/j.csite.2021.101384.
  • 13 Chu, Kaiwei, B. Wang, D.L. Xu, Y.X. Chen, Aibing Yu,. 2011. CFD–DEM simulation of the gas–solid flow in a cyclone separator. Chemical Engineering Science. 66. pp. 834-847. DOI:10.1016/j.ces.2010.11.026.
  • 14 O. Vytyaz, I. Chudyk, V. Mykhailiuk, 2015. Study of the effects of drilling string eccentricity in the borehole on the quality of its cleaning. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining. pp. 591-595.
  • 15 N.D. Katopodes, Free-Surface Flow: Computational Methods, Oxford, UK: Butterworth-Heinemann, 2019.
  • 16 V. Dragan, I. Malael, B. Gherman, 2016. A Comparative Analysis Between Optimized and Baseline High Pressure Compressor Stages Using Tridimensional Computational Fluid Dynamics. Engineering, Technology & Applied Science Research, 6(4), pp. 1103-1108. DOI: 10.48084/etasr.696.
  • 17 V.V, Maistruk R.I. Havryliv A.S.Popil, A.M. Basistyi 2012.Otsinka enerhozatrat pry roboti priamotechiinoho tsyklonu za dopomohoiu prohramnoho paketu FLOW SIMULATION. Vostochno-Evropeyskiy zhurnal peredovyih tehnologiy. 6/8(60). pp. 28-30.
  • 18 F.P. Lucas and R. Huebner, "Numerical Simulation of Sin-gle-Phase andTwo-Phase Flows in Separator Vessels with Inclined Half-Pipe InletDevice Applied in Reciprocating Compressors," Engineering, Technology & Applied Science Research, vol. 8, no. 3, pp. 2897-2900, Jun. 2018, https://doi.org/10.48084/etasr.1993.
  • 19 S.C.K. De Schepper, G.J. Heynderickx, and G.B. Marin. 2008. CFD modeling of all gas-liquid and vapor-liquid flow regimes predicted by the Baker chart," Chemical Engineering Journal. 138. 1. pp. 349-357, DOI: 10.1016/J.CEJ.2007.06.007.
  • 20 A.P. Laleh, W.Y. Svrcek, and W.D. Monnery. 2012. Design and CFD studies of multiphase separators – a review," The Canadian Journal of Chemical Engineering. 90. 6. pp. 1547-1561. DOI: 10.1002/CJCE.20665.
  • 21 G. Cheng, L. Yan, and H. Zhou, 2004. The Oil Vessel Struc-ture Optimization by the use of CFD in the Oil Injection Twin-Screw Compressor," presented at the International Compressor Engineering Conference, West Lafayette, IN, USA, Art. no. 1714.
  • 22 Xu. Yanxia, Ye. Junxiang, Xingfu Song, Jianguo Yu. 2022. Classification of Ultrafine Particles Using a Novel 3D-Printed Hydrocyclone with an Arc Inlet: Experiment and CFD Modeling. ACS Omega. 8. DOI:10.1021/acso-mega.2c06383.
  • 23 J.Y. Tian, L. Ni, T. Song, J.N. Zhao. 2020. CFD simulation of hydrocyclone – separation performance influenced by reflux device and different vortex – finder lengths. Sep. Purif. Technol. 233, No. 116013. DOI: 10.1016/j.seppur.2019.116013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1211b55c-2e59-4a18-977d-34613a77874f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.