PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research of cyclist’s spine dynamical model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the paper is to present a dynamic model of bicyclist’s lumbar spine for the evaluation of linear and angular variation of intervertebral distance in sagittal plane. Ten degrees of freedom biomechanical model of the spine was solved numerically. Larger loads acting on a cyclist spine occur mostly while sitting in a sport position in comparison with recreation or middle sitting. The load on lumbar spine region is influenced by cycle’s tire pressure, road bumps and wheeling speed. The biggest linear and angular displacements were found between L4–L5 vertebras. The biggest load protractile spine muscle experiences in the sport sitting position. Maximum vertebrae rotation and linear variation values in wheeling regime with 1.5 Bar tyres pressure and at a speed of 10 km/h are 0.46° and 0.46 mm. Maximum vertebrae rotation and linear variation values for a 23 year old, 1.74 m high and 73 kg of mass (bicycle mass ~ 7 kg) man in wheeling regime with 3.5 Bar tyres pressure and at a speed of 30 km/h are 3.9° and 1.23 mm. The biggest variation of rotation in sagittal plane between two nearest lumbar spines is about 1°. Because of this displacement the frontal part of last mentioned disc is compressed with 530 N more and dorsal disc part as much less.
Rocznik
Strony
37--44
Opis fizyczny
Bibliogr. 11 poz., rys., tab., wykr.
Twórcy
  • Vilnius Gediminas Technical University, Vilnius, Lithuania
autor
  • Vilnius Gediminas Technical University, Vilnius, Lithuania
autor
  • Białystok University of Technology, Białystok, Poland
Bibliografia
  • [1] WHEELER A.H., Pathophisiology of Chronic Back pain, Headache and Pain, 2007, Vol. 07(9), 1–15.
  • [2] HUNT T., Pain in Europe – A report, Cambridge University, 2007, 24.
  • [3] VALEIKIENE V., MERCEKAS G., Acute and chronic back pain of older patients, Gerontologija, 2006, Vol. 7(3), 154–157.
  • [4] SALAI M., BROSH T., BLANKSTEIN A., ORAN A., CHECHIK A., Effect of changing the saddle angle on the incidence of low back pain in recreational cyclists, Br. J. Sports Med., 1999, Vol. 33(6), 398–400.
  • [5] ADAMS M.A., DOLAN P., Spine biomechanics, J. Biomech., 2005, Vol. 38(10), 1972–1983.
  • [6] MARDSEN M., SCHWELLNUS M., Lower back pain in cyclists: A review of epidemiology, pathomechanics and risk factors, Int. J. Sports Med., 2010, Vol. 11(1), 216–225.
  • [7] VEY MESTDAGH K., Personal perspective: in search of an optimum cycling posture, Appl. Ergon. J., 1998, Vol. 5(29), 325–334.
  • [8] WAECHTER M., RIESS F., ZACHARIAS N., A multibody model for the simulation of bicycle suspension systems, Vehicle systems dynamics, 2002, Vol. 37(1), 3–28.
  • [9] KURUTZ M., In vivo age- and sex-related creep of human lumbar motion segments and discs in pure centric tension, J. Biomech., 2006, Vol. 39(7), 1180–1190.
  • [10] GARDNER-MORSE M., STOKES I., Structural behaviour of human lumbar spinal motion segments, J. Biomech., 2004, Vol. 37(2), 205–212.
  • [11] BORKOWSKI P., MAREK P., KRZESINSKI G. et al. Finite element analysis of artificial disc with an elastomeric core in the lumbar spine, Acta Bioeng. Biomech., 2012, Vol. 14(1), 1–8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-120b688c-ac50-4680-ba4b-4ca87bf203fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.