PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the usefulness of small detectors made of Gafchromic EBT3 film for measurements in areas with high dose gradient and without charged-particle equilibrium (CPE)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: In some clinical cases a full therapeutic dose needs to be delivered in the area close to the skin surface where a high dose gradient and there no charged-particle equilibrium (CPE) exists. The accuracy of dose distribution calculations performed in this region with the treatment planning system is limited. In this work we investigated the usefulness of small pieces of Gafchromic EBT3 film for measurements of the absolute dose value in the area close to the skin surface. Material and methods: The Gafchromic EBT3 film detectors of size 1.0 cm x 1.5 cm were prepared. The film samples were calibrated in 6 MV photon beam (Elekta Versa HD). Calibration was performed in a dose range of 0 – 250 cGy. Films were scanned using the EPSON EXPRESSION 10000 XL flatbed scanner in 48-bit RGB mode, with a resolution of 72 dpi. ImageJ software was used to calculate the dose. Triple-channel film dosimetry was applied. The uncertainty of the dose measurement method was estimated. Film measurements were compared with the dose measurements using ionization chamber. The conformity of measurements was assessed using the metrological compliance test. Results: The relative differences between dose measurements using Gafchromic EBT3 film detectors and ionization chamber for a single square photon beam were -0.8% and 0.3% for a depth of 0.5 cm and 5.0 cm (CPE) respectively. The values of the metrological compatibility test factor ζ were 0.3 and 0.1 respectively. The maximum relative differences for dynamic beams were 0.9% and -1.0% for a depth of 0.5 cm and 5.0 cm respectively. Metrological compatibility test showed also good agreement (ζ=0.3). Conclusions: Small film detectors made of Gafchromic EBT3 film allow for the accurate dose measurements in the high dose gradient region and without CPE. They can be used to validate the calculation of the treatment planning systems also for VMAT techniques.
Rocznik
Strony
152--160
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Medical Physics Department, Holycross Cancer Center, Kielce, Poland
  • Medical Physics Department, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
  • Medical Physics Department, Holycross Cancer Center, Kielce, Poland
Bibliografia
  • 1. Miften M, Olch A, Mihailidis D, et al. Tolerance limits and methodologies forIMRTmeasurement‐based verification QA Recommendations of AAPM Task Group No. 218. Medical Physics. 2018;45(4). doi:10.1002/mp.12810
  • 2. Oinam AS, Singh L. Verification of IMRT dose calculations using AAA and PBC algorithms in dose buildup regions. J Applied Clin Med Phys. 2010;11(4):105-121. doi:10.1120/jacmp.v11i4.3351
  • 3. Wang L, Cmelak AJ, Ding GX. A simple technique to improve calculated skin dose accuracy in a commercial treatment planning system. J Applied Clin Med Phys. 2018;19(2):191-197. doi:10.1002/acm2.12275
  • 4. Cao Y, Yang X, Yang Z, et al. Superficial dose evaluation of four dose calculation algorithms. Radiation Physics and Chemistry. 2017;137:23-28. doi:10.1016/j.radphyschem.2016.02.032
  • 5. Bennie N, Metcalfe P. Practical IMRT QA dosimetry using Gafchromic film: a quick start guide. Australas Phys Eng Sci Med. 2016;39(2):533-545. doi:10.1007/s13246-016-0443-0
  • 6. Borca VC, Pasquino M, Russo G, et al. Dosimetric characterization and use of Gafchromic EBT3 film for IMRT dose verification. J Applied Clin Med Phys. 2013;14(2):158-171. doi:10.1120/jacmp.v14i2.4111
  • 7. Marrazzo L, Zani M, Pallotta S, et al. GafChromic® EBT3 films for patient specific IMRT QA using a multichannel approach. Physica Medica. 2015;31(8):1035-1042. doi:10.1016/j.ejmp.2015.08.010
  • 8. Aland T, Moylan R, Kairn T, Trapp J. Effect of verification imaging on in vivo dosimetry results using Gafchromic EBT3 film. Physica Medica. 2016;32(11):1461-1465. doi:10.1016/j.ejmp.2016.10.020
  • 9. Kidoń J, Polaczek-Grelik K, Gołba K, Wojakowski W, Ochała A. Calibration of Gafchromic XR-RV3 film under interventional radiology conditions. Polish Journal of Medical Physics and Engineering. 2021;27(2):165-173. doi:10.2478/pjmpe-2021-0020
  • 10. Chełmiński K, Bulski W, Georg D, et al. Energy dependence of radiochromic dosimetry films for use in radiotherapy verification. Reports of Practical Oncology & Radiotherapy. 2010;15(2):40-46. doi:10.1016/j.rpor.2010.02.003
  • 11. GAFChromic™ EBT3 film specifications, http://www.gafchromic.com/documents/EBT3_Specifications.pdf
  • 12. IAEA 2006 Technical Reports Series No. 398, Absorbed Dose Determination In External Beam Radiotherapy (Vienna: International Atomic Energy Agency).
  • 13. Wołowiec P, Kukołowicz PF. The analysis of the measurement uncertainty with application of small detectors made of Gafchromic EBT films for the range of doses typical for in vivo dosimetry in teleradiotherapy. Radiation Measurements. 2016;92:72-79. doi:10.1016/j.radmeas.2016.08.001
  • 14. Lewis D, Micke A, Yu X, Chan MF. An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan. Medical Physics. 2012;39(10):6339-6350. doi:10.1118/1.4754797
  • 15. Niroomand‐Rad A, Blackwell CR, Coursey BM, et al. Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55. Medical Physics. 1998;25(11):2093-2115. doi:10.1118/1.598407
  • 16. Matney JE, Parker BC, Neck DW, Henkelmann G, Rosen II. Evaluation of a commercial flatbed document scanner and radiographic film scanner for radiochromic EBT film dosimetry. J Applied Clin Med Phys. 2010;11(2):198-208. https://doi.org/10.1120/jacmp.v11i2.3165
  • 17. Devic S, Seuntjens J, Sham E, et al. Precise radiochromic film dosimetry using a flat-bed document scanner. Med Phys. 2005;32(7Part1):2245-2253. doi:10.1118/1.1929253
  • 18. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675. https://doi.org/10.1038/nmeth.2089
  • 19. Dąbrowski R, Drozdyk I, Kukołowicz P. High accuracy dosimetry with small pieces of Gafchromic films. Reports of Practical Oncology & Radiotherapy. 2018;23(2):114-120. doi:10.1016/j.rpor.2018.01.001
  • 20. Micke A, Lewis DF, Yu X. Multichannel film dosimetry with nonuniformity correction. Med Phys. 2011;38(5):2523-2534. doi:10.1118/1.3576105
  • 21. JCGM 100:2008, Evaluation of measurement, data - Guide to the expression of uncertainty in measurement, https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf
  • 22. IAEA-TECDOC-1585, Measurement Uncertainty, 2008, https://www-pub.iaea.org/MTCD/Publications/PDF/te_1585_web.pdf.
  • 23. Essers M, Mijnheer B. In vivo dosimetry during external photon beam radiotherapy. International Journal of Radiation Oncology*Biology*Physics. 1999;43(2):245-259. doi:10.1016/s0360-3016(98)00341-1
  • 24. Gromczak K, Ostrowska K, Gąska A, Sładek J. The universal validation algorithm of coordinate measuring methods. Measurement Automation Monitoring. 2016;62(4):120-124.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1207632e-6911-431a-b6c4-690a3fa26f5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.