PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A multi-method approach to groundwater risk assessment : a case study of a landfill in southern Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Estimating groundwater vulnerability to pollution is based on the quantitative and qualitative assessment of the degree of exposure to the pollution. This article attempts to assess groundwater vulnerability to pollution in the area of a complex of landfill sites located in the supply area of one of the important groundwater reservoirs in southern Poland. Two dynamic leaching tests and two static tests were carried out on two different samples of slag from one of the metallurgical landfills during various periods of storage (15 year old waste and freshly deposited waste). Transport equations were based on the data from a column experiment. The advection-dispersion equation for column leaching was employed, which confirmed the simulation parameters through experimentation. The results of the leaching tests on chlorides showed that they are leached from the landfill over a period of ~60–90 years from the moment of depositing the waste. The seepage time for the Quaternary aquifer is 1–7 years and, for the Triassic aquifer, 5–40 years. The Backman’s contamination index (1998) values exceeded 25, while a high threat to groundwater is observed when the contamination index value equals 3. The use of all the aforementioned methods determined the most vulnerable area.
Rocznik
Strony
361--374
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
  • University of Silesia, Faculty of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
autor
  • University of Silesia, Faculty of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
  • University of Silesia, Faculty of Mathematics, Physics and Chemistry, Bankowa 14, 40-007 Katowice, Poland
autor
  • University of Tabriz, Faculty of Civil Engineering, Department of Water Resources Engineering , P.O. Box: 51666, Tabriz, Iran
  • Near East University, Department of Civil Engineering, P.O. Box: 99138, Nicosia, North Cyprus
Bibliografia
  • 1. Alexandrowicz, S., Alexandrowicz, Z., 1960. Triassic sediments in the vicinity of Strzemieszyce and Sławków (Upper Silesia) (in Polish with English summary). Biuletyn Instytutu Geologicznego, 152: 95-171.
  • 2. Backman, B., Bodis, D., Lahermo, P., Rapant, S., Tarvainen, T., 1998. Application of a contamination index in Finland and Slovakia. Environmental Geology, 36: 55-64.
  • 3. Bhuiyan, M., Bodrud-Doza, M., Islam, A., Rakib, M., Rahman, M., Ramanthan, A., 2016. Assessment of groundwater quality of Lakshimpur district of Bangladesh using water quality indices, geostatistical methods and multivariate analysis. Environmental Earth Sciences, 75, 10.1007/s12665-016-5823-y.
  • 4. Bielewicz, R., Suszka, G., Sztembis-Bukowska, A., 2010. Baza danych GIS Mapy hydrogeologicznej Polski 1:50 000. Pierwszy poziom wodonośny, wrażliwość na zanieczyszczenie. Arkusz Zawiercie (in Polish). Polish Geological Institute - National Research Institute.
  • 5. Boufekane, A., Saighi, O., 2013. Assessment of groundwater pollution by nitrates using intrinsic vulnerability methods: a case study of the Nil valley groundwater (Jijel, North-East Algeria). African Journal of Environmental Science and Technology, 7: 949-960.
  • 6. Brown, K., Donnelly, K., 2009. An estimation of the risk associated with the organic constituents of hazardous and municipal waste landfill leachates. Environmental Engineering Sciences, 5:1-30.
  • 7. Civita, M., 2010. The combined approach when assessing and mapping groundwater vulnerability to contamination. Water Resources Protection, 2: 14-28.
  • 8. Dąbrowska, D., Sołtysiak, M., Kucharski, R., 2015. The homogeneity of the groundwater monitoring network in the region of the landfills' system in Strzemieszyce (in Polish with English summary). Przegląd Geologiczny, 63: 657-660.
  • 9. Fetter, C., 2001. Applied Hydrogeology. Prentice Hall. Upper Saddle River. Pearson.
  • 10. Foster, S., 1987. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. Intern. Conf. Vulnerability of Soil and Groundwater to Poliutants, RIVM Proceedings, 38: 69-86.
  • 11. Gogu, R., Dassargues, A., 2000. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environmental Geology, 39: 549-559.
  • 12. Goldscheider, N., 2003. The PI Method. In: Cost Action 620 - Vulnerability and risk mapping for the protection of carbonate (karst) aquifers (ed. F. Zwahlen): 144-154. Final report. European Commission Directorate General for Research.
  • 13. Gomo, M., Masemola, E., 2016. Groundwater hydrogeochemical characteristics in rehabilitated coalmine spoils. Journal of African Earth Sciences, 116: 114-126.
  • 14. Hermanowski, P., Ignaszak, T., 2017. Ground water vulnerability based on four different assessment methods and their quantitative comparison in a typical North European Lowland river catchment (the Pliszka River catchment, western Poland). Geological Quarterly, 61 (1): 166-176.
  • 15. Kabbour, B., Zouhri, L., Mainia, J., Colbeaux, J., 2006. Assessing groundwater contamination risk using the DASTI/IDRISI GIS method: coastal system of western Mamora, Morocco. Bulletin of Engineering Geology and Environment, 65: 463-470.
  • 16. Krogulec, E., 2004. Vulnerability groundwater assessment in the river valley based on the hydrodynamic evidence (in Polish with English summary). University of Warsaw, Warsaw.
  • 17. Krogulec, E., 2011. Intrinsic and specific vulnerability of groundwater to contamination in a river valley (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 445: 337-344.
  • 19. Leibundgut, C., Małoszewski, P., Kűlls, Ch., 2009. Tracers in hydrology. Wiley-Blackwell, Chichester.
  • 18. Lambrakis, N., Anatonakos, A., Panagopoulos, G., 2004. The use of multi component statistical analysis in hydrogeological environmental research. Water Research, 38: 1862-1872.
  • 20. Liu, L., Cheng, S., Guo, H., 2004. Asimulation-assessment modeling approach for analyzing environmental risks of groundwater contamination at waste landfill sites. Human and Ecological Risk Assessment, 10: 373-388.
  • 21. Nourani, V., Ejlali, R., Alami, M., 2011. Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics model: a case study. Environmental Engineering Sciences, 28: 217-228.
  • 22. Nourani, V., Khanghah, T., Sayyadi, M., 2013. Application of the Artificial Neural Network to monitor the quality of treated water. International Journal of Management and Information Technology, 3: 38-45.
  • 23. Nourani, V., Andalib, G., Dąbrowska, D., 2017a. Conjunction of wavelet transform and SOM-mutual information data pre-processing approach for AI-based Multi-Station nitrate modeling of watersheds. Journal of Hydrology, 548: 170-183.
  • 24. Nourani, V., Mousavi, S., Dąbrowska, D., Sadikoglu, F., 2017b. Conjunction of radial basis function interpolator and artificial intelligence models for time-space modeling of contaminant transport in porous media. Journal of Hydrology, 548: 569-587.
  • 25. Oke, S., Vermeulen, D., Gomo, M., 2016. Aquifer vulnerability assessment of the Dahomey Basin using the RTt method. Environmental Earth Sciences, 75: 1-9.
  • 26. Panagopoulos, G., Anatonakos, K., Lambrakis, N., 2006. Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistiical methods and GIS. Hydrogeology Journal, 14: 894-911.
  • 27. Pazdro, Z., 1983. Hydrogeologia (in Polish). Wyd. Geol., Warszawa.
  • 28. Priddle, M.W., Jackson, R.E., 1991. Laboratory column test measurement of VOC retardation factors and comparison with field values. Groundwater, 29: 260-266.
  • 29. Robins, N.S., 1998. Groundwater pollution, aquifer recharge and vulnerability. Geological Society Special Publications, 130.
  • 30. Różkowska, A., Różkowski, A., Rudzińska, T., 1975. Hydrochemical characteristics of the Triassic water-bearing system in the Silesia-Cracow region (in Polish with English summary). Biuletyn Instytutu Geologicznego, 282: 579-581.
  • 31. Różkowski, A., 1990. Szczelinowo-krasowe zbiorniki wód podziemnych Monokliny Śląsko-Krakowskiej i problemy ich ochrony (in Polish). SGGW-AR Press, Warszawa.
  • 32. Różkowski, A., Wilk, Z., 1980. Warunki hydrogeologiczne złóż rud cynku i ołowiu regionu śląsko-krakowskiego (in Polish). Instytut Geologiczny, Warszawa.
  • 33. Różkowski, A., Rudzińska, T., Siemiński, A., 1997. Mapa warunków występowania, użytkowania, zagrożenia i ochrony zwykłych wód podziemnych GZW i jego obrzeżenia, 1:100 000 (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 34. Singh, P., Verma, P., Tiwari, A., Sharma, S., Purty, P., 2015. Review of various contamination index approaches to evaluate groundwater quality with Geographic Information System (GIS). International Journal of ChemTech Research, 7: 1920-1929.
  • 35. Sołtysiak, M., 2007. The Lysimeter research of leaching from metallurgical slags of the Katowice Steelwork (in Polish with English summary). In: AGH, Współczesne problemy hydrogeologii, 13 (2): 345-353. Kraków.
  • 36. Sołtysiak, M., 2009. The dynamic tests of leaching from metallurgical slags of the Katowice Steelwork (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 436: 475-482.
  • 37. Stupnicka, E., 2007. Geologia regionalna Polski (in Polish). Warsaw University Press.
  • 38. Szczepańska, J., 1987. Coal waste as a source of pollution of the aquatic environment (in Polish with English summary). Scientific Bulletins of Stanisław Staszic Academy of Mining and Metallurgy 1135. Geology, 35.
  • 39. Todd, D., Mays, L., 2005. Groundwater Hydrology. Wiley.
  • 40. Troiano, J., Spurlock, F., Marade, J., 1999. Update of the California Vulnerability Soil Analysis for Movement of Pesticides to Groundwater. Department of Pesticide Regulation.
  • 41. Vrba, J., Zaporozec, A. eds., 1994. Guidebook on mapping groundwater vulnerability. IAH International Contributions to Hydrogeology, 16.
  • 42. Wachniew, P., Zurek, A., Stumpp, C., Gemitzi, A., Gargini, A., Filippini, M., Rozanski, K., Meeks, J., Kvaener, J., Witczak, S., 2016. Towards operational methods for the assessment of intrinsic groundwater vulnerability: a review. Critical Reviews in Environmental Science and Technology, 46: 827-884.
  • 43. Wang, X., Li, H., Yang, J., Wan, L., Wang, X., Jiang, X., Guo, H., 2014. Measuring in situ vertical hydraulic conductivity in tidal environments. Advances in Water Resources, 70: 118-130.
  • 44. Witczak, S., Żurek, A., 1994. The use of soil-agricultural maps in evaluating the protective role of soils for groundwater (in Polish with English summary). In: Methodical Basement of the Groundwater Protection (ed. A.S. Kleczkowski). AGH University of Science and Technology, Cracow.
  • 45. Witkowski, A., Kowalczyk, A., 2004. A simplified method of regional groundwater vulnerability assessment. International Conference on Groundwater Vulnerability Assessment and Mapping, Ustroń, Poland.
  • 46. Witkowski, A., Rubin, K., Kowalczyk, A., Różkowski, A., Wróbel, J., 2003. Groundwater vulnerability map of the Chrzanów karst-fissured Triassic aquifer (Poland). Environmental Geology, 4: 59-67.
  • 47. Yang, Y.S., Wang, L., 2010. Catchment-scale vulnerability assessment of groundwaier pollution from diffuse sources using the DRASTIC method: a case study. Journal of Hydrological Siences, 55: 1206-1216.
  • 48. Zhang, Ch., Li, Ch., Huang, Y., 2009. A new method applied for the evaluation of municipal solid waste landfill stabilization. Environmental Engineering Sciences, 26: 1123-1130.
  • 49. Zhu, C., Byrd, R., Lu, P., Nocedal, J., 1997. L-BFGS-B: algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Transactions on Mathematical Software, 23: 550-560.
  • 50. Zuber, A., 1984. Review of existing mathematical models for interpretation of tracer data in hydrology. Proc. of an Advisory Group Meeting and Mathematical Models Interpretation of Tracer Data, IAEA.
  • 51. Zwahlen, F., 2004. Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report COST action 620. European Commission, Directorate-General for Research, EUR 20912:297.
  • 52. EN 12457-2 Characterisation of waste - Leaching - Compliance test for leaching of granular waste materials and sludges - Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size <10 mm (without or with size reduction).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1201062e-5d6b-4f00-b7c0-8f941bdc9618
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.