Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In recent years, low back pain has emerged as a significant global health issue, largely attributed to the prevalence of lumbar disc degeneration (LDD). This increases high demand on implant manufacturing due to the uniqueness of each patient’s anthropometry. Which creates a surge in the implant design and its performance study. This work employed finite element analysis to evaluate the efficacy of Interbody cage fusion in combination with different biostructures and biomaterials. Methods: The Lumbar Model was created by incorporating a surgical implant cage that featured three different lattice architectures using Boolean operations. We constructed four models, one model that was not altered and three models that underwent surgical procedures. The surgical models consist of three types of lattice implants are double diamond (DD), double diamond centre support (DDCS), double diamond side support (DDSS). Results: The results indicate that the double diamond (DD) lattice-structured polyether ether ketone (PEEK) material implant experiences the most deformation, measuring 0.67 mm, when subjected to axial rotation motion. An analysis indicates the implant made with the DDCS lattice structure and Ti-6Al-4V material is subjected to the least stress – it stood at 75.47 MPa as the smallest stress level recorded. Conclusions: The result of endplate von mises stress shows the PEEK material with DDCS lattice structured implant have low stress. Ti-6Al-4V and Stainless steel having high stress of 20 MPa on endplates. Comparatively Ti-6Al-4V having very good response with literature data. These results are providing insights towards the selection of implant in future medical treatment.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
3--18
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, Tamil Nadu, India.
autor
- Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, Tamil Nadu, India.
autor
- Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, Tamil Nadu, India.
Bibliografia
- [1] AYTURK U.M., PUTTLITZ C.M., Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine, Comput. Methods Biomech. Biomed. Engin., 2011, 14 (8), 695–705, DOI: 10.1080/10255842.2010.493517.
- [2] CAI X.Y., SUN M.S., HUANG Y.P., LIU Z.X., LIU C.J., DU C.F., YANG Q., Biomechanical Effect of L4–L5 Intervertebral Disc Degeneration on the Lower Lumbar Spine: A Finite Element Study, Orthop. Surg., 2020, 12 (3), 917–930, DOI: 10.1111/os.12703.
- [3] CHEN C.S., CHENG C.K., LIU C.L., LO W.H., Stress analysis of the disc adjacent to interbody fusion in lumbar spine, Med. Eng. Phys., 2001, 23 (7), 483–491, DOI: 10.1016/s1350-4533(01)00076-5.
- [4] CHEN S.H., LIN S.C., TSAI W.C., WANG C.W., CHAO S.H., Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery – a finite element analysis, BMC Musculoskeletal Discord., 2012, 13, DOI: 10.1186/1471-2474-13-72.
- [5] DREISCHARF M., ZANDER T., SHIRAZI-ADL A., PUTTLITZ C.M., ADAM C.J., CHEN C.S., GOEL V.K., KIAPOUR A., KIM Y.H., LABUS K.M., LITTLE J.P., PARK W.M., WANG Y.H., WILKE H.J., ROHLMANN A., SCHMIDT H., Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together, J. Biomech., 2014, 47 (8), 1757–1766, DOI: 10.1016/j.jbiomech.2014.04.002.
- [6] ELKHOURY K., MORSINK M., SANCHEZ-GONZALEZ L., KAHN C., TAMAYOL A., ARAB-TEHRANY E., Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications, Bioact. Mater, 2021, 6 (11), 3904–3923, DOI: 10.1016/j.bioactmat.2021.03.040.
- [7] FAN W., GUO L.X., A comparison of the influence of three different lumbar interbody fusion approaches on stress in the pedicle screw fixation system: Finite element static and vibration analyses, Int. J. Numer. Method. Biomed. Eng., 2019, 35 (3), E3162, DOI: 10.1002/cnm.3162.
- [8] FAN Y., ZHOU S., XIE T., YU Z., HAN X., ZHU L., Topping-off surgery vs posterior lumbar interbody fusion for degenerative lumbar disease: a finite element analysis, J. Orthop. Surg. Res., 2019, 14 (1), DOI: 10.1186/s13018-019-1503-4.
- [9] GOULD S.L., CRISTOFOLINI L., DAVICO G., VICECONTI M., Computational modelling of the scoliotic spine: A literature review, Int. J. Numer. Method. Biomed. Eng., 2021, 37 (10), E3503, DOI: 10.1002/cnm.3503.
- [10] GUO L.X., LI R., ZHANG M., Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method, Acta Bioeng. Biomech., 2016, 18 (2), 19–29, DOI: 10.5277/ABB-00406-2015-02.
- [11] GUO L.X., TEO E.C., LEE K.K., ZHANG Q.H., Vibration characteristics of the human spine under axial cyclic loads: effect of frequency and damping, Spine (Phila Pa 1976), 2005, 30 (6), DOI: 10.1097/01.brs.0000155409.11832.02.
- [12] HAO S., WANG M., YIN Z., JING Y., BAI L., SU J., Microenvironment-targeted strategy steers advanced bone regeneration, Mater. Today Bio., 2023, 22, DOI: 10.1016/j.mtbio.2023.100741.
- [13] JOHNSON J.W., GADOMSKI B., LABUS K., STEWART H., NELSON B., SEIM H., REGAN D., VON STADE D., KELLY C., HORNE P., GALL K., EASLEY J., Novel 3D printed lattice structure titanium cages evaluated in an ovine model of interbody fusion, JOR Spine, 2023, 6 (3), E1268, DOI: 10.1002/jsp2.1268.
- [14] KIRNAZ S., CAPADONA C., LINTZ M., KIM B., YERDEN R., GOLDBERG J.L., MEDARY B., SOMMER F., MCGRATH L.B., BONASSAR L.J., HÄRTL R., Pathomechanism and Biomechanics of Degenerative Disc Disease: Features of Healthy and Degenerated Discs, Int. J. Spine Surg., 2021, 15, 10–25, DOI: 10.14444/8052.
- [15] LAI Y.P., LIN Y.H., WU Y.C., SHIH C.M., CHEN K.H., LEE C.H., PAN C.C., Robot-Assisted Pedicle Screw Placement Led to Lower Screw Loosening Rate than Fluoroscopy-Guided Technique in Transforaminal Lumbar Interbody Fusion for Lumbar Degenerative Disease: A Single-Center Retrospective Study, J. Clin. Med., 2022, 11 (17), DOI: 10.3390/jcm11174989.
- [16] LIU C., GUO C., MENG F., ZHU Z., XIA W., LIU H., Perioperative risk factors related to complications of lumbar spine fusion surgery in elderly patients, BMC Musculoskeletal Disord., 2023, 24 (1), DOI: 10.1186/s12891-023-06689-z.
- [17] LIU SHUNYU., SHIN YUNG., Additive manufacturing of Ti6Al4V alloy: A review, Materials and Design, 2018, 164, DOI: 10.1016/j.matdes.2018.107552.
- [18] LU T., LU Y., Interlaminar stabilization offers greater biomechanical advantage compared to interspinous stabilization after lumbar decompression: a finite element analysis, J. Orthop. Surg. Res., 2020, 15, DOI: 10.1186/s13018-020-01812-5.
- [19] MEGANATHAN S., ALPHIN M.S., Biomechanical assessment of lumbar stability: finite element analysis of TLIF with a novel combination of coflex and pedicle screws, Acta Bioeng. Biomech., 2024, 25 (4), 133–143, DOI: 10.37190/abb-02380-2024-04.
- [20] MOLINARI L., FALCINELLI C., GIZZI A., DI MARTINO A., Effect of pedicle screw angles on the fracture risk of the human vertebra: A patient-specific computational model, J. Mech. Behav. Biomed. Mater, 2021, 116, DOI: 10.1016/j.jmbbm.2021.104359.
- [21] NAKHLI Z., BEN HATIRA F., PITHIOUX M., CHABRAND P., SAANOUNI K., On prediction of the compressive strength and failure patterns of human vertebrae using a quasi-brittle continuum damage finite element model, Acta Bioeng. Biomech., 2019, 21 (2), 143–151, DOI: 10.5277/ABB-01265-2019-03.
- [22] NONGTHOMBAM C., PATANI S., GULVE N.D., NEHETE A., PARDESHI M.P., AHER S., Stress Evaluation of Titanium-gold and Titanium-aluminum-vanadium Alloy for Orthodontic Implants: A Comparative Finite Element Model Study, J. Indian Orthod. Soc, 2017, 51 (4), 245–249, DOI: 10.4103/jios.jios_20_17.
- [23] PARK W.M., KIM K., KIM Y.H., Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine, Comput. Biol. Med., 2013, 43 (9), 1234–1240, DOI: 10.1016/j.compbiomed.2013.06.011.
- [24] PONNAPPAN R.K., SERHAN H., ZARDA B., PATEL R., ALBERT T., VACCARO A.R., Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation, Spine J., 2009, 9 (3), DOI: 10.1016/j.spinee.2008.08.002.
- [25] ROHLMANN A., NELLER S., CLAES L., BERGMANN G., WILKE H.J., Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine, Spine (Phila Pa 1976), 2001, 26 (24), E557-61, DOI: 10.1097/00007632-200112150-00014.
- [26] RUGGERI M., BIANCHI E., ROSSI S., VIGANI B., BONFERONI M.C., CARAMELLA C., SANDRI G., FERRARI F., Nanotechnology- Based Medical Devices for the Treatment of Chronic Skin Lesions: From Research to the Clinic, Pharmaceutics, 2020, 12 (9), DOI: 10.3390/pharmaceutics12090815.
- [27] SAMANTA A., LUFKIN T., KRAUS P., Intervertebral disc degeneration-Current therapeutic options and challenges, Front Public Health, 2023, 11, DOI: 10.3389/fpubh.2023.1156749.
- [28] SCHMIDT H., GALBUSERA F., ROHLMANN A., SHIRAZI-ADL A., What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades, J. Biomech., 2013, 46 (14), 2342–2355, DOI: 10.1016/j.jbiomech. 2013.07.014.
- [29] STEINMANN M., LAMPE D., GROSSER J., SCHMIDT J., HOHOFF M.L., FISCHER A., GREINER W., Risk factors for herpes zoster infections: a systematic review and meta-analysis unveiling common trends and heterogeneity patterns, Infection, 2024, 52 (3), 1009–1026, DOI: 10.1007/s15010-023-02156-y.
- [30] TAN L.A., YERNENI K., TUCHMAN A., LI X.J., CERPA M., LEHMAN R.A., LENKE L.G., Utilization of the 3D-printed spine model for freehand pedicle screw placement in complex spinal deformity correction, J. Spine Surg., 2018, 4 (2), 319–327, DOI: 10.21037/jss.2018.05.16.
- [31] TEO E.C., NG H.W., Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method, Med. Eng. Phys., 2001, 23 (3), 155–164, DOI: 10.1016/S1350-4533(01)00036-4.
- [32] TREDAN D.A., MOBBS R.J., MAHARAJ M., PARR W.C.H., Combining Virtual Surgical Planning and Patient-Specific 3D-Printing as a Solution to Complex Spinal Revision Surgery, J. Pers Med., 2022, 13 (1), DOI: 10.3390/jpm13010019.
- [33] URBAN J.P., ROBERTS S., Degeneration of the intervertebral disc, Arthritis Res. Ther., 2003, 5 (3), 120–130, DOI: 10.1186/ar629.
- [34] VALLEJO R., GUPTA A., CEDENO D.L., VALLEJO A., SMITH W.J., THOMAS S.M., BENYAMIN R., KAYE A.D., MANCHIKANTI L., Clinical Effectiveness and Mechanism of Action of Spinal Cord Stimulation for Treating Chronic Low Back and Lower Extremity Pain: a Systematic Review, Curr. Pain Headache Rep., 2020, 24 (11), DOI: 10.1007/s11916-020-00907-2.
- [35] WALSH W.R., EVANS R.O., ILIOPOULOS J., CORNWALL G.B., THOMAS K.A., Evaluation of a bioresorbable polylactide sheet for the reduction of pelvic soft tissue attachments in a porcine animal model, Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2006, 79 (1), 166–175, DOI: 10.1002/jbm.b.30527.
- [36] WANG B., HUA W., KE W., LU S., LI X., ZENG X., YANG C., Biomechanical Evaluation of Transforaminal Lumbar Interbody Fusion and Oblique Lumbar Interbody Fusion on the Adjacent Segment: A Finite Element Analysis, World Neurosurg., 2019, 126, e819–e824, DOI: 10.1016/j.wneu.2019.02.164.
- [37] WANG Z., ZHANG B., Weakly solvating electrolytes for nextgeneration lithium batteries: design principles and recent advances, Energy Mater. Devices, 2023, 1 (1), DOI: 10.26599/emd.2023.9370003.
- [38] YANG Y., JIANG Y., QIAN D., WANG Z., XIAO L., Prevention and treatment of osteoporosis with natural products: Regulatory mechanism based on cell ferroptosis, J. Orthop. Surg. Res., 2023, 18 (1), DOI: 10.1186/s13018-023-04448-3.
- [39] ZHAI W.J., LIU L., GAO Y.H., QIN S.L., HAN P.F., XU Y.F., Application of 3D printed porous titanium interbody fusion cage vs. polyether ether ketone interbody fusion cage in anterior cervical discectomy and fusion: A systematic review and meta-analysis update, Exp. Ther. Med., 2024, 28 (1), DOI: 10.3892/etm.2024.12579.
- [40] ZHU J., SHEN H., CUI Y., FOGEL G.R., LIAO Z., LIU W., Biomechanical Evaluation of Transforaminal Lumbar Interbody Fusion with Coflex-F and Pedicle Screw Fixation: Finite Element Analysis of Static and Vibration Conditions, Orthop. Surg., 2022,14 (9), 2339–2349, DOI: 10.1111/os.13425.
- [41] ZHU S., DONG R., LIU Z., LIU H., LU Z., GUO Y., A finite element method study of the effect of vibration on the dynamic biomechanical response of the lumbar spine, Clin. Biomech. (Bristol, Avon), 2024, 111, DOI: 10.1016/j.clinbiomech.2023.106164.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-12003f8c-997c-4692-b583-1a76ecf13a3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.