PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of different suture techniques for Achilles tendon repair in rat model using collagen scaffolds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tendon injury is an increasing problem in medicine due to aging of the population and increased activity demands. Many rodent animal models are used in order to evaluate tendon reconstruction. Although tendon reruptures are a known problem, the outcomes of tendon repair in animal models are rarely discussed in the literature. The goal of the present experimental study was to compare the primary fixation stability of three suture techniques for repair of Achilles tendon defects in a rat model using a collagen scaffold. Methods: Cadaveric left hind limbs of Sprague-Dawley rats were prepared with an Achilles tendon defect of 3 mm and rejoined using a collagen scaffold. Three suture configurations (simple, simple stitch with additional framing suture, and modified Mason–Allen stitch; n = 5 each) underwent tensile testing until complete failure was observed. Results: Under a load of a mean value of 6.6 N, the failure load of simple stitches was the significantly lowest ( p < 0.01). Both, modified Mason–Allen stitches and simple stitches with additional framing suture showed a mean failure load of more than 14 N. Regardless of the suture technique, most of the samples showed failure of tendon due to suture tear-out. The suture material as well as the scaffold remained mostly intact. Conclusions: Although simple end-toend suture techniques are common in the literature, stitches with more suture strands should be preferred. Using techniques like an additional framing suture or modified Mason–Allen stitch, maximum failure load can be doubled and the risk of tendon rerupture may be decreased in vivo.
Rocznik
Strony
73--77
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Rostock, Germany
  • University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Rostock, Germany
autor
  • University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Rostock, Germany
autor
  • University Medicine Rostock, Department of Orthopedics, Biomechanics and Implant Technology Laboratory, Rostock, Germany
Bibliografia
  • [1] Aspenberg P., Virchenko O., Platelet concentrate injection improves Achilles tendon repair in rats, Acta Orthop. Scand., 2004, 75(1), 93–99.
  • [2] BEST T.M., COLLINS A., LILLY E.G., SEABER A.V., GOLDNER R., MURRELL G.A.C., Achilles tendon healing: A correlation between functional and mechanical performance in the rat, J. Orthop. Res., 1993, 11(6), 897–906.
  • [3] BOLT P., CLERK A.N., LUU H.H. et al., BMP-14 gene therapy increases tendon tensile strength in a rat model of Achilles tendon injury, J. Bone Joint Surg. Am., 2007, 89(6), 1315–1320.
  • [4] COUTINHO E.L., GOMES A.R.S., FRANÇA C.N., SALVINI T.F., A new model for the immobilization of the rat hind limb, Braz. J. Med. Biol. Res., 2002, 35(11), 1329–1332.
  • [5] DERWIN K.A., CODSI M.J., MILKS R.A., BAKER A.R., MCCARRON J.A., IANNOTTI J.P., Rotator Cuff Repair Augmentation in a Canine Model with Use of a Woven Poly-L-Lactide Device, J. Bone Joint Surg. Am., 2009, 91(5), 1159–1171.
  • [6] EDELSTEIN L., THOMAS S.J., SOSLOWSKY L.J., Rotator cuff tears: what have we learned from animal models?, J. Musculoskelet Neuronal Interact., 2011, 11(2), 150–162.
  • [7] ELIASSON P., ANDERSSON T., ASPENBERG P., Achilles tendon healing in rats is improved by intermittent mechanical loading during the inflammatory phase, J. Orthop. Res., 2012, 30(2), 274–279.
  • [8] FREEDMAN B.R., GORDON J.A., BHATT P.R. et al., Nonsurgical treatment and early return to activity leads to improved Achilles tendon fatigue mechanics and functional outcomes during early healing in an animal model, J. Orthop. Res., 2016, 34(12), 2172–2180.
  • [9] GABLER C., GIERSCHNER S., LINDNER T., TISCHER T., BADER R., Magnetic Resonance Imaging as an auxiliary tool for evaluation of tendon repair in an animal model using colagen- -based scaffolds, EORS 2017, Munich, September 13–15.
  • [10] GÜNGÖRMÜŞ C., ÇETİNKAYA M.A., DEMİRUTKU A., A new model for partial immobilization of rat hind limb after Achilles tendon excision/reinterposition, Turk. J. Vet. Anim. Sci., 2013, 37(5), 546–552.
  • [11] IKEMOTO R.Y., MURACHOVSKY J., NASCIMENTO L.G.P., BUENO R.S., ALMEIDA L.H., STROSE E., Study on the resistance of the supraspinous tendon using simple, matress and mason allen stitches, Acta Ortopédica Bras., 2010, 18(2), 100–103.
  • [12] KAYMAZ B., GÖLGE U.H., OZYALVACLI G. et al., Effects of boric acid on the healing of Achilles tendons of rats, Knee Surg. Sports Traumatol. Arthrosc., 2016, 24(12), 3738–3744.
  • [13] LIN T.W., CARDENAS L., SOSLOWSKY L.J., Biomechanics of tendon injury and repair, J. Biomech., 2004, 37(6), 865–877.
  • [14] MA C.B., MACGILLIVRAY J.D., CLABEAUX J., LEE S., OTIS J.C., Biomechanical evaluation of arthroscopic rotator cuff stitches, J. Bone Joint Surg. Am., 2004, 86-A(6), 1211–1216.
  • [15] MCCOY B.W., HADDAD S.L., The Strength of Achilles Tendon Repair: A Comparison of Three Suture Techniques in Human Cadaver Tendons, Foot Ankle Int., 2010, 31(8), 701–705.
  • [16] MOMOSE T., AMADIO P.C., ZHAO C., ZOBITZ M.E., COUVREUR P.J., An K-N., Suture techniques with high breaking strength and low gliding resistance: Experiments in the dog flexor digitorum profundus tendon, Acta Orthop. Scand., 2001, 72(6), 635–641.
  • [17] MURRELL G.A.C., LILLY E.G., GOLDNER R.D., SEABER A.V., BEST T.M., Effects of immobilization on achilles tendon healing in a rat model, J. Orthop. Res., 1994, 12(4), 582–591.
  • [18] OUYANG H.W., GOH J.C.H., THAMBYAH A., TEOH S.H., LEE E.H., Knitted Poly-lactide-co-glycolide Scaffold Loaded with Bone Marrow Stromal Cells in Repair and Regeneration of Rabbit Achilles Tendon, Tissue Eng., 2003, 9(3), 431–439.
  • [19] PERRY S.M., GUPTA R.R., VAN KLEUNEN J., RAMSEY M.L., SOSLOWSKY L.J., GLASER D.L., Use of small intestine submucosa in a rat model of acute and chronic rotator cuff tear, J. Shoulder Elbow Surg., 2007, 16(5), S179–S183.
  • [20] REBECCATO A., SANTINI S., SALMASO G., NOGARIN L., Repair of the achilles tendon rupture: A functional comparison of three surgical techniques, J. Foot Ankle Surg., 2001, 40(4), 188–194.
  • [21] RICCHETTI E.T., AURORA A., IANNOTTI J.P., DERWIN K.A., Scaffold devices for rotator cuff repair, J. Shoulder Elbow Surg., 2012, 21(2), 251–265.
  • [22] RODRIGUES M.T., REIS R.L., GOMES M.E., Engineering tendon and ligament tissues: present developments towards successful clinical products, J. Tissue Eng. Regen. Med., 2013, 7(9), 673–686.
  • [23] WALDEN G., LIAO X., DONELL S., RAXWORTHY M.J., RILEY G.P., SAEED A., A Clinical, Biological, and Biomaterials Perspective into Tendon Injuries and Regeneration, Tissue Eng. Part B Rev., 2016, 23(1), 44–58.
  • [24] WEBB W.R., DALE T.P., LOMAS A.J. et al., The application of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds for tendon repair in the rat model, Biomaterials, 2013, 34(28), 6683–6694.
  • [25] ZANTOP T., GILBERT T.W., YODER M.C., BADYLAK S.F., Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction, J. Orthop. Res., 2006, 24(6), 1299–1309.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11ff0140-ff7b-4503-84e2-d65596bd6881
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.