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The paper deals with a single-phase reluctance motor used to test the motion 
equations of an electromechanical system. The identification of the motor electric 
parameters as a function of the rotation angle of the rotor was carried out using AC 50 
Hz voltage source. A mechanical part of the system was designed as a physical 
pendulum containing the motor rotor and a metal bar mounted on the rotor axis. The 
parameters of the mechanical part were measured during the pendulum oscillations. The 
work presents the characteristics and motion equation parameters of the motor 
dynamics. The reluctance motor motion equation does not fullfil the power balance. The 
parameters of the motion equations obtained from the experiment and from the second 
order Lagrange’a equations are compared. The derivation of motion equation, together 
with a discussion of holonomicity of electromechanical systems is also presented.  
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1. Introduction 
 

 A construction of a reluctance motor (RM) is very simple because of it has 
not brushes, magnets and rotor windings. Consequently, a reluctance motor is 
highly reliable and fault-tolerant. The secondary advantage of reluctance motors 
is that the rate of motor rotation may be easily regulated. As a result, they 
compete with other widely known motors and are now often used in household 
devices and in many branches of industry. 
 In order to analyze the motion equation of the electromechanical system, the 
reluctance motor with a single pair of stator and rotor poles was chosen – Fig. 1.  

The major drawback of the motor is that it starts to operate only for 
particular angles of the rotor versus stator. However, the electric circuit is 
described only by means of one equation. Therefore, it facilitates and simplifies 
the analysis and experimental verification of the mathematical model. 

The mathematical model of an electromechanical device consists of 
electrical and mechanical parts described by two equations. The analysis of 
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systems is based on the measurements of the electric circuit and the mechanical 
system parameters. 

 
 

Fig. 1. General diagram of the reluctance motor 
 

The mechanical equation may be formulated as follows [1]:  

eL TTk
dt
dJ  
           (1) 

where: J - moment of inertia, k - coefficient of friction, TL – torque of load. 
 The electromagnetic torque Te is defined as [2]:  
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where: i - is current intensity, and ∂L(φ)/∂φ is a derivative of inductance versus 
the rotor rotation angle in relation to stator. The inductance L(φ) is a function of 
the rotation angle φ. 
 Multiplying the equation (1) by the angular velocity, yields a power balance 
equation: 
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 A term on the right side of the equation (3) represents the power which is 
transferred from the electrical part of motor. Terms on the left side of equation 
(3) represent the power, related to the changes of rotor kinetic energy, friction 
power, and load power.  
 The equation of the electric system is often written in the form [3-5]: 

ss UiR)i)(L(
dt
d

          (4) 

where: Rs – stator winding resistance, L(φ)  – stator winding inductance. 
 Expansion of the derivative in (4) and multiplying it by current i, yields the 
following power equation of electric circuit: 
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 The first term on the left side of the equation defines the rate of change of 
magnetic energy which is cumulated in the motor inductance. The second 
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describes the intensity of energy which is transformed to the mechanical system. 
The last represents the thermal energy loss of stator winding. A term on the 
right side describes the electric power supplied to the motor. It should be 
emphasized, that the power transferred to the mechanical system from the 
electric system in the equation (5) is different than the intensity of energy 
transferred to the mechanical system in the equation (3).  
 The explanation of power difference may be found in [6-8].  In these papers 
power transformed from electric circuit is splitted into two parts: 
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and then it is written as: 
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 The first term is interpreted as the rate of magnetic energy accumulation, the 
second one is described as power transformed to the mechanical system. It 
should be noted, that in steady state the energy stored in the coil has two terms:  
the first one - ½Ldi2/dt, in the steady state equals zero, and the second one - 
½i2ωdL/dφ, has the same form as the power transferred to the mechanical 
system. In a steady state the transfer of electric power to mechanical output 
power is continuous. It means that accumulation rate of magnetic energy is 
constant and the magnetic energy of motor increases continuously. Is it 
possible? 
 

2. Identification of parameters 
 

In order to verify the above mentioned relations, the test bench with the 
reluctance motor was constructed. The stator of the motor had one pair of poles, 
and a rotor had only one pair of teeth – Fig. 1. 

In order to specify the relation between inductance and the rotation angle of 
the rotor, the motor winding was supplied by from AC 50 Hz voltage source. 
Due to the symmetry of the motor, the research was carried out for the rotation 
angle range of 180 degrees set up with a 5 degree step. The instantaneous values 
of current and the voltage of the motor winding were measured. The 
measurements were conducted using the National Instruments measurement 
boards, as well as LabVIEW and Matlab programs. The inductance profile as a 
function of rotation angle was established using the measured values – Fig. 2. 
 The intermediate value of a derivative of inductance versus rotation angle for 
the rising linear section of the characteristic in fig. 2 was calculated. Its value 
between a 20 degree and a 75 degree rotation angle amounts to: 
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Fig. 2. The inductance profile for the angle of rotation 
 
 The measurement of the parameters during the rotation process is quite 
complex, because the moment of load has to be set and measured. Therefore, in 
order to analyze the coefficients of the equations (1) and (4), the mechanical 
system of the motor was modified. A steel rod of 6mm x 6mm x 354mm 
dimensions and of 100g weight was attached to the rotor axis. The rod and the 
rotor together formed a physical pendulum – Fig. 3. On a motor shaft there is 
also a rotary encoder, which is used to measure the inclination angle of the rotor 
in relation to the stator. When the stator circuit is powered from the stabilized 
current source, the pendulum moves up by about 30 degree. In the first 
experiment the rotation angle measurement was related to vertical position of 
the bar and the direction of earth gravity – point B in fig. 2. The pendulum 
position was changed manually. After release the oscillations of the steel bar 
position related to the rotor rotation angle were caused [9]. In the test the 
changes of inductance were placed on the rising part of the inductance profile – 
fig. 2. The moment of inertia J is a sum of rotor inertia and pendulum inertia. A 
resistor R is connected in series with the coil of stator, and it is used to measure 
current in the stator winding. The values of voltage, current and rotation angle 
are measured simultaneously using NI 9225 and NI 6216 boards. The boards are 
serviced by a LabView program installed on the computer where the data are 
recorded in a text data file *.txt. The data files are loaded into MATLAB and 
processed using Golay - Savitzky filter to eliminate noise and calculate 
derivatives. The parameters of the motion equations were calculated using least 
squares method [10]. 
 In order to check the coefficients of the motion equations (1) and (4), the 
identification of the equations parameters was carried out. The motor 
parameters were identified for stabilized current supply, thus derivative of the 
current in the equation (9) was omitted. The general form of the motion 
equations of the system is as follows:   
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sUi
dt
d2wi1w 
         (9) 
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where: w1 – stator winding resistance (Rs), w2, w5 – derivative of inductance 
versus the rotor rotation angle in relation to stator(∂L(φ)/∂φ), w3 –  moment of 
inertia (J), w4 – coefficient of dry friction, φ – the angle of rotor rotation, i – is 
current intensity, Us  – power supply, m – weight rod, g – gravity acceleration,   
l – length of rod. 

 
 

Fig. 3. The measurement diagram of the reluctance motor parameters 
 

 The system in Fig. 3 was powered by DC voltage source with a stabilized 
current value. The current flow affects that the rotor inclines of the pendulum 
rod by an angle φ. The value of current is selected to match the inclination angle 
of the pendulum, which should be placed the middle of near the profile positive 
inclination – at the function of an angle - point B in fig 2. The rotor was placed 
in such a way, that a vertical position of pendulum could match a 20 degree 
rotation angle (point A) of the characteristic in fig. 2. The current value in the 
stator winding was assumed for a 20 degree deflection the pendulum. It 
corresponds to the point of the equilibrium (point B), with a 50 degree angle – 
Fig. 2. If the pendulum is deviated from the equilibrium point, it oscillates 
around it. 

The approximate values of coefficients the equations (9) and (10) were 
presented. Basing on measurement of current i, angle φ, and time derivatives of 
angle the parameters w1,...,w5 were identified. Both the voltage induced in the 
winding, and its approximate calculation from the equation (9) are shown in 
Fig. 4.  
 Similarly, time characteristics of load from the equation (10) is displayed in 
Fig. 5.  
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Fig. 4. The waveform of voltage oscillation of the stator windings 
 

 
 

Fig. 5. The process of oscillation for the mechanical equation 
 
 On the basis of the measurement, the coefficients of the equation (9) and the 
coefficients of the equation (10) are:  

rad
H0199.02w28.31w           (11) 
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 It can be seen, that a coefficient w2 from the equation (11) and a coefficient 
w5 from the equation (12) are very close. Both values almost equal a half of the 
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value of the derivative of inductance profile versus the rotation angle (8) as 
presented in Fig. 2 with the accuracy being one percent. The correlation 
coefficient between measured and calculated voltages in Fig. 4 is 0.9307. For 
the mechanical equation the correlation coefficient in fig. 5 is equal to 0.9925. 
 The experiment showed that in the equation (9), the term which contains the 
derivative of inductance with respect to rotation angle, should be multiplied by 
coefficient ½. Therefore, the motion equation of electric circuit of RM should 
be formulated as follows: 

i
d
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 The equation which resulted from the experiment (13) is different from the 
widely known electric equation of electric motor [3-5] due the presence of the 
coefficient ½. Therefore, the analysis of relation between power balance and the 
holonomicity of reluctance motor would be performed.  

 
3. Holonomicity analysis of the reluctance motor 

 
The Lagrange function is most commonly used to describe motion equations 

of electromechanical systems [11]. It is described by generalized coordinates 
and velocities as the difference between kinematic and potential energy as 
follows: 

VTfL           (14) 
where: T –kinematic energy, V – potential energy 

The Lagrange function does not take into account a friction and external 
forces. In general, potential energy is not present in electromechanical systems. 
The Lagrange function only describes internal energy flows. It describes 
relationships between particular generalized coordinates and their derivatives. 
Hence, the holonomicity of the system should be discussed on the basis of 
Lagrange function of homogeneous and conservative systems. If, electric 
coordinates (electric charges) qe and mechanical coordinates (angles) qm, are 
discriminated from among generalized coordinated the Lagrange function of the 
system may be described as: 
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 Basing on the Lagrange function, d’Alambert - Lagrange equation may be 
formulated [12]. For the electromechanical system, it is as follows: 
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 According to [12 p.90], the variations δqe and δqm from d’Alambert – 
Lagrange equation are independent only for the holonomic system, and only for 
that system, we obtain the Lagrange equation of the second kind in form: 
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 If it is assumed that the variations of generalized coordinates are equal to the 
time derivatives of the generalized coordinates, the d’Alambert - Lagrange 
equation (16) becomes the equation of power balance.  
 By substituting in the equation (16) with Lagrange function (15), and by 
assuming that δqe = i = const and δqm = ω, the equation of power balance is not 
fulfilled in steady state: 
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 The power balance is (19) is different than zero, hence d’Alambert – 
Lagrange equation for the holonomic system is not satisfied. Consequently, it is 
apparent, that the analyzed electromechanical system is non-holonomic. 
 If a dynamic system is described by n generalized coordinates, but its 
equations contain only m < n of these coordinates and all generalized velocities, 
then the system is non-holonomic [12 p. 107-108]. The same rule is applicable 
to the equations of electromechanical systems. Therefore, it may be concluded 
that the electric equation determines whether the analyzed system is holonomic 
or non-holonomic. There is no generalized electric coordinate – electric charge 
in electric equations. 
 From  [13] (pages 145-146) it follows that the same procedure may be 
applied to both non-holonomic and holonomic systems. However, some 
correction in the equations is necessary. 
 “The modifications that have to be made to the Lagrange equations may be 
found by looking at the problem in a slightly different way, and regarding the 
constrained system as the unconstrained system acted on by certain external 
forces, namely those forces which have to be exerted in order to compel the 
system to obey the constraint. This formulation has the advantage that in it the 
coordinates ql, q2, ...,qn may be regarded as independent; the constraints now 
appear as the effect of additional forces, and not as relations between the 
coordinates. Because the coordinates are independent, Lagrange's equations 
may be used, and the equations of motion of the constrained systems may be 
obtained by including the effects of the additional forces in the Lagrangian 
equations.” [13 p.146].  
In the analyzed example in electric equation a force QN was introduced. 
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 In [12] a similar method is described. It assumes that, if the system is non-
holonomic, we should add the vector of reactions of non-holonomic constraints, 
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as an additional expression (e.g. QN ≠ 0). Then d’Alambert – Lagrange equation 
may be represented by (20). Basing on the text from  [12 p. 92]: “if QN is the 
generalized force of reaction in the process of movement of the non-holomonic 
system, then the equation (20) describes also the process of movement of some 
holomonic system, along with kinetic energy T and the generalized force of 
reaction QN”. It allows us to analyze the equations of electric and mechanical 
systems independently. 

On the basis of the equation (20) and the energy balance of the conservative 
system, we may determine a correction QN. Assuming that the variations of 
generalized coordinates are equal to the derivations of these coordinates, and 
taking into account the correction, mentioned above in steady-state we get a 
following equation: 
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Hence an additional force QN equals: 
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 If the additional force is used in an electric equation and are added 
dissipative and potential forces, the following relation is obtained: 
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 It can be seen that the equation (23) is the same as equation (13), established 
on the basis of measurements. The multiplication of the equation (23) by the 
current i yields: 
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The equation is physically interpreted and describes to the power balance of 
electric equation.  

 
4. Conclusions 

 
 It may be concluded that the power balance in the reluctance motor is 
achieved only after using the additional voltage, which plays a role of “non-
holonomic force” in the electric equation of the reluctance motor. Only if, this 
condition is fulfilled the powers in the given motor model are balanced. It 
proves that the analyzed motor is a non-holonomic system.  
 The equation describing an electric circuit for a non-holonomic system 
should be formulated as (13). Then the power transferred to the mechanical 
system is equal to the power transferred from the electric equation. 
 The correction presented in this paper may be also applied in more complex 
electromagnetic systems e.g. multi phase switching reluctance motor. 
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