PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Ni(II) Ions by Citric Acid-Functionalised Aloe vera Leaf Powder – Characterisation, Kinetics, and Isotherm Studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aloe vera leaves (AVL), a by-product of agricultural waste, have been applied as a biosorbent for reducing Ni(II) ions in aqueous solutions. The biosorption capability of AVL powder was enhanced through chemical treatment with 0.10 M citric acid solution. Fourier-transform infrared (FTIR) spectrophotometer, scanning electron microscope coupled with energy dispersive X-ray (SEM-EDX), pH of point-zero-charge (pHPZC), and pHslurry analyses were used to study the surface, and chemical properties of citric acid-treated Aloe vera leaf powder (CAAVLP). The setting for experiments such as pH solution, CAAVLP dose, initial concentration, and biosorption time was investigated. Maximum Ni(II) ion biosorption capability was determined to be 48.65 mg/g based on the Langmuir model at pH 6, a CAAVLP dose of 0.02 g, initial Ni(II) concentrations of 5 to 50 mg/L and biosorption time of 120 min. The data for the isotherm and kinetics were well matched with the Freundlich and pseudo-second-order models, respectively, with high regression correlation (R2) and low chi-square (χ2) values. The presence of more-COOH groups after treating AVL with citric acid resulted in more Ni(II) ions being able to be removed.
Słowa kluczowe
Rocznik
Strony
217--227
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Department of Chemistry, College of Science, Ibb University, Ibb, Yemen
  • Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, 26400, Jengka, Pahang, Malaysia
  • Faculty of Applied Sciences, Universiti Teknologi MARA Pahang, 26400, Jengka, Pahang, Malaysia
  • School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
Bibliografia
  • 1. Akbal, F., Camc, S. 2011. Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination, 269, 214–222.
  • 2. An, Q., Deng, S., Liu, M., Li, Z., Wu, D., Wang, T., Chen, X. 2021. Study on the aerobic remediation of Ni (II) by Pseudomonas hibiscicola strain L1 interaction with nitrate. Journal of Environmental Management, 299, 113641.
  • 3. Beidokhti, M.Z., Naeeni, S.T.O., AbdiGhahroudi, M.S. 2019. Biosorption of nickel (II) from aqueous solutions onto pistachio hull waste as a low-cost biosorbent. Civil Engineering Journal, 5, 447–457.
  • 4. Chand, A., Chand, P., Khatri, G.G., Paudel, D.R. 2021. Enhanced removal efficiency of arsenic and copper from aqueous solution using activated Acorus calamus based adsorbent. Chemical and Biochemical Engineering Quarterly, 35, 279–293.
  • 5. Costa, J.M., da Costa, J.G.d.R., de Almeida Neto, A.F. 2022. Techniques of nickel (II) removal from electroplating industry wastewater: Overview and trends. Journal of Water Process Engineering, 46, 102593.
  • 6. Das, K.K., Reddy, R.C., Bagoji, I.B., Das, S., Bagali, S., Mullur, L., Khodnapur, J.P., Biradar, M.S. 2019. Primary concept of nickel toxicity – an overview. Journal of Basic and Clinical Physiology and Pharmacology, 30, 141–152.
  • 7. Ezeonuegbu, B.A., Machido, D.A., Whong, C.M.Z., Japhet, W.S., Alexiou, A., Elazab, S.T., Qusty, N., Yaro, C.A., Batiha, G.E.-S. 2021. Agricultural waste of sugarcane bagasse as efficient adsorbent for lead and nickel removal from untreated wastewater: Biosorption, equilibrium isotherms, kinetics and desorption studies. Biotechnology Reports, 30, e00614.
  • 8. Freundlich, H. 1926. Colloid and Capillary Chemistry. Methuen, London.
  • 9. Gautam, R.K., Sharma, S.K., Mahiya, S., Chattopadhyaya, M.C. 2015. Chapter 1: Contamination of Heavy Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation. Heavy Metals In Water: Presence, Removal and Safety. The Royal Society of Chemistry.
  • 10. Giannakoudakis, D.A., Hosseini-Bandegharae, A., Tsafrakidou, P., Triantafyllidis, K.S., Kornaros, M., Anastopoulos, I. 2018. Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review. Journal of Environmental Management, 227, 354–364.
  • 11. Gupta, S., Kumar, A. 2019. Removal of Nickel (II) from aqueous solution by biosorption on A. bar- badensis Miller waste leaves powder. Applied Water Science, 9, 96.
  • 12. Gupta, S., Sharma, S.K., Kumar, A. 2019. Biosorption of Ni(II) ions from aqueous solution using modified Aloe barbadensis Miller leaf powder. Water Science and Engineering, 12, 27–36.
  • 13. Hanafiah, M.A.K.M., Abu Bakar, N.A., Al-Amrani, W.A., Ibrahim, S., Nik Malek, N.A.N., Jawad, A.H. 2022. Preparation, characterization and application of sulphuric acid-treated soursop (Annona muricata L.) seeds powder in the adsorption of Cu(II) ions. Nature Environment and Pollution Technology, 21, 217–223.
  • 14. Ho, Y.S., McKay, G. 1999. Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.
  • 15. Hoang, M.T., Pham, T.D., Pham, T.T., Nguyen, M.K., Nu, D.T.T., Nguyen, T.H., Bartling, S., Van der Bruggen, B. 2020. Esterification of sugarcane bagasse by citric acid for Pb2+ adsorption: effect of different chemical pretreatment methods. Environmental Science and Pollution Research.
  • 16. Hu, H., Xu, K. 2020. Chapter 8 – Physicochemical technologies for HRPs and risk control. In: Ren, H., Zhang, X. (Eds.) High-Risk Pollutants in Wastewater. Elsevier.
  • 17. Lagergren, S., Svenska, B.K. 1898. Zurtheorie der sogenannten adsorption geloesterstoffe. Veternskapsakad Handlingar, 24, 1–9.
  • 18. Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40, 1361e1403.
  • 19. Ogunlalu, O., Oyekunle, I.P., Iwuozor, K.O., Daniel Aderibigbe, A., Emenike, E.C. 2021. Trends in the mitigation of heavy metal ions from aqueous solutions using unmodified and chemically-modified agricultural waste adsorbents. Current Research in Green and Sustainable Chemistry, 4, 100188.
  • 20. Pujari, M., Kapoor, D. 2021. Chapter 1: Heavy metals in the ecosystem: Sources and their effects. In: Kumar, V., Sharma, A.,Cerdà, A. (eds.) Heavy Metals in the Environment. Elsevier.
  • 21. Qu, W., He, D., Guo, Y., Tang, Y., Shang, J., Zhou, L., Zhu, R., Song, R.-J. 2019. Modified water hyacinth functionalized with citric acid as an effective and inexpensive adsorbent for heavy metal ions removal. Indusrial Engineering Chemistry Research, 1–33.
  • 22. Rajczykowski, K., Sałasińska, O., Loska, K. 2018. Zinc removal from the aqueous solutions by the chemically modified biosorbents. Water, Air& Soil Pollution, 229.
  • 23. Reddy, D.H.K., Ramana, D., Seshaiah, K., Reddy, A. 2011. Biosorption of Ni (II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination, 268, 150–157.
  • 24. Strauss, M., Diaz, L., McNally, J., Klaehn, J., Lister, T. 2021. Separation of cobalt, nickel, and manganese in leach solutions of waste lithium-ion batteries using Dowex M4195 ion exchange resin. Hydrometallurgy, 206, 105757.
  • 25. Tejada-Tovar, C., Acevedo, D., Villabona-Ortíz, A., Pájaro-Gómez, N., Otero, M. 2021. Comparative study using raw and treated cassava and lemon residues in the removal if Nickel (II). Agrociencia.
  • 26. Tiwari, S., Aachhera, S., Garg, H., Rojra, M., Nagar, N., Gahan, C.S. 2022. Comparative biosorption kinetics study of Ni and Zn metal ions from the aqueous phase in sulfate medium by the wooden biomass of Dalbergia sissoo. Environmental Quality Management, 31, 63–73.
  • 27. Vengatajalapathi, N., Ayyappan, S., Rajasekar, V. 2022. Eco-friendly filtration of Nickel from the sludge during electrochemical machining of Monel 400 alloys. Global NEST Journal, 24, 203–211.
  • 28. Wang, C., Li, T., Yu, G., Deng, S. 2021. Removal of low concentrations of nickel ions in electroplating wastewater by combination of electrodialysis and electrodeposition. Chemosphere, 263, 128208.
  • 29. Yuvaraja Gutha, Venkata Subbaiah Munagapati, Mu. Naushad, Abburi, K. 2014. Removal of Ni(II) from aqueous solution by Lycopersicum esculentum (Tomato) leaf powder as a low-cost biosorbent. Desalination and Water Treatment.
  • 30. Zhang, L., Ji, L., Li, L., Shi, D., Xu, T., Peng, X., Song, X. 2021. Recovery of Co, Ni, and Li from solutions by solvent extraction with β-diketone system. Hydrometallurgy, 204, 105718.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11fdc535-cf04-4958-b645-8d6709231e6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.