PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aerosol dipole pattern over India: consequences on rainfall and relation with wind circulations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aerosol concentrations are changing in rapid phase in the recent decades over Indian subcontinent. A general conclusion that is postulated from various studies indicated high aerosol loading over the Indian subcontinent. The aerosol concentrations are found to alter cloud-precipitation chemistry globally. Analysing the trends of aerosol concentrations over the Indian subcontinent is crucial to understand in depth the aerosol–precipitation relationship over these regions. In the present study, the long-term trend (2000–2019) of aerosols, precipitation and winds has been analysed over the Indian subcontinent. The work aims to identify the zones of significant increasing/decreasing Aerosol Optical Depth concentrations and alter the rainfall patterns over these regions. Mann–Kendall test has been employed for trend analysis. An aerosol dipole pattern is observed along the eastern-western boundaries of the monsoon trough over the Indian subcontinent (India, Bangladesh and Pakistan), which shows an inverse relationship with the rainfall patterns. Over the north-western region of the Indian subcontinent, the reduced pollution and enhanced precipitation may further alter the land-sea thermal gradient, resulting in the weakening of monsoonal circulation. Enhanced pollution over eastern India is adjusting the precipitation distribution along with the weakening of low-level jet and moisture transport. The present study provides an evidence of aerosol–precipitation relation over the Indian subcontinent using long-term datasets that has profound application in better understanding the weather systems.
Czasopismo
Rocznik
Strony
2475--2482
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
  • Department of Earth and Atmospheric Sciences, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
  • Department of Earth and Atmospheric Sciences, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
Bibliografia
  • 1. Abish B, Mohanakumar K (2013) Absorbing aerosol variability over the Indian subcontinent and its increasing dependence on ENSO. Glob Planet Change 106:13–19. https://doi.org/10.1016/j.gloplacha.2013.02.007
  • 2. Altaratz O, Koren I, Remer LA, Hirsch E (2014) Cloud invigoration by aerosols—coupling between microphysics and dynamics. Atmos Res 140:38–60. https://doi.org/10.1016/j.atmosres.2014.01.009
  • 3. Arora A, Rao SA, Chattopadhyay R, Goswami T, George G, Sabeerali CT (2016) Role of Indian Ocean SST variability on the recent global warming hiatus. Glob Planet Change 143:21–30. https://doi.org/10.1016/j.gloplacha.2016.05.009
  • 4. Asoka A, Gleeson T, Wada Y, Mishra V (2017) Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat Geosci 10(2):109–117. https://doi.org/10.1038/ngeo2869
  • 5. Bodenheimer S, Nirel R, Lensky IM, Dayan U (2021) The synoptic skill of aerosol optical depth and angstrom exponent levels over the Mediterranean Basin. Int J Climatol 41(3):1801–1820. https://doi.org/10.1002/joc.6931
  • 6. Chen G, Wang WC, Chen JP (2018) Circulation responses to regional aerosol climate forcing in summer over East Asia. Clim Dyn 51(11–12):3973–3984. https://doi.org/10.1007/s00382-018-4267-3
  • 7. Choudhury G, Tyagi B, Singh J, Sarangi C, Tripathi SN (2019) Aerosol-orography-precipitation–a critical assessment. Atmos Environ 214:116831. https://doi.org/10.1016/j.atmosenv.2019.116831
  • 8. Choudhury G, Tyagi B, Vissa NK, Singh J, Sarangi C, Tripathi SN, Tesche M (2020) Aerosol-enhanced high precipitation events near the Himalayan foothills. Atmos Chem Phys 20(23):15389–15399. https://doi.org/10.5194/acp-20-15389-2020
  • 9. Das S, Mohanty UC, Tyagi A, Sikka DR, Joseph PV, Rathore LS, Habib A, Baidya SK, Sonam K, Sarkar A (2014) The SAARC STORM: a coordinated field experiment on severe thunderstorm observations and regional modeling over the South Asian Region. Bull Am Meteorol Soc 95(4):603–617. https://doi.org/10.1175/BAMS-D-12-00237.1
  • 10. Dave P, Bhushan M, Venkataraman C (2017) Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-17599-1
  • 11. Dey S, Girolamo L (2011) A decade of change in aerosol properties over the Indian subcontinent. Geophys Res Lett 38:L14811. https://doi.org/10.1029/2011GL048153
  • 12. Feng J, Li J, Zhu J, Liao H, Yang Y (2017) Simulated contrasting influences of two La Niña Modoki events on aerosol concentrations over eastern China. J Geophys Res Atmos 122(5):2734–2749. https://doi.org/10.1002/2016JD026175
  • 13. Feng J, Zhu J, Li J, Liao H (2020) Aerosol concentrations variability over China: two distinct leading modes. Atmos Chem Phys 20(16):9883–9893. https://doi.org/10.5194/acp-20-9883-2020
  • 14. Filonchyk M, Hurynovich V, Yan H (2020) Trends in aerosol optical properties over Eastern Europe based on MODIS-Aqua. Geosci Front 11(6):2169–2181. https://doi.org/10.1016/j.gsf.2020.03.014
  • 15. Guhathakurta P, Rajeevan M, Sikka DR, Tyagi A (2015) Observed changes in southwest monsoon rainfall over India during 1901–2011. Int J Climatol 35(8):1881–1898. https://doi.org/10.1002/joc.4095
  • 16. Guo D, Sun J, Yang K, Pepin N, Xu Y, Xu Z, Wang H (2020) Satellite data reveal southwestern Tibetan plateau cooling since 2001 due to snow-albedo feedback. Int J Climatol 40(3):1644–1655. https://doi.org/10.1002/joc.6292
  • 17. Hatzianastassiou N, Matsoukas C, Drakakis E, Stackhouse PW Jr, Koepke P, Fotiadi A, Pavlakis KG, Vardavas I (2007) The direct effect of aerosols on solar radiation based on satellite observations, reanalysis datasets, and spectral aerosol optical properties from Global Aerosol Data Set (GADS). Atmos Chem Phys 7(10):2585–2599. https://doi.org/10.5194/acp-7-2585-2007
  • 18. Jacobson MZ (2012) Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols. J Geophys Res Atmos. https://doi.org/10.1029/2011JD017218
  • 19. Jeoung H, Chung CE, Van Noije T, Takemura T (2014) Relationship between fine-mode AOD and precipitation on seasonal and interannual time scales. Tellus b: Chem Phys Meteorol 66(1):23037. https://doi.org/10.3402/tellusb.v66.23037
  • 20. Jiang X, Ting M (2017) A dipole pattern of summertime rainfall across the Indian subcontinent and the Tibetan Plateau. J Clim 30(23):9607–9620. https://doi.org/10.1175/JCLI-D-16-0914.1
  • 21. Jin Q, Wang C (2018) The greening of Northwest Indian subcontinent and reduction of dust abundance resulting from Indian summer monsoon revival. Sci Rep 15 8(1):1–9. https://doi.org/10.1038/s41598-018-23055-5
  • 22. Jin Q, Wei J, Yang ZL (2014) Positive response of Indian summer rainfall to Middle East dust. Geophy Res Lett 16 41(11):4068–4074. https://doi.org/10.1002/2014GL059980
  • 23. Kendall MG (1975) Rank correlation methods. Oxford University Press, New York, NY
  • 24. Kim MK, Lau WK, Kim KM, Sang J, Kim YH, Lee WS (2016) Amplification of ENSO effects on Indian summer monsoon by absorbing aerosols. Clim Dyn 46(7–8):2657–2671. https://doi.org/10.1007/s00382-015-2722-y
  • 25. Klingmüller K, Pozzer A, Metzger S, Stenchikov GL, Lelieveld J (2016) Aerosol optical depth trend over the Middle East. Atmos Chem Phys 16(8):5063–5073. https://doi.org/10.5194/acp-16-5063-2016
  • 26. Krishnan R (2002) Ramanathan V (2002) Evidence of surface cooling from absorbing aerosols. Geophys Res Lett 29(9):54–61. https://doi.org/10.1029/2002GL014687
  • 27. Kumar M, Parmar KS, Kumar DB, Mhawish A, Broday DM, Mall RK, Banerjee T (2018) Long-term aerosol climatology over Indo-Gangetic Plain: trend, prediction and potential source fields. Atmos Environ 180:37–50. https://doi.org/10.1016/j.atmosenv.2018.02.027
  • 28. Kumar PV, Naidu CV, Prasanna K (2020) Recent unprecedented weakening of Indian summer monsoon in warming environment. Theor Appl Climatol 140(1):467–486. https://doi.org/10.1007/s00704-019-03087-1
  • 29. Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864. https://doi.org/10.1007/s00382-006-0114-z,855-864
  • 30. Lau KM, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett. https://doi.org/10.1029/2006GL027546
  • 31. Lau WK, Kim KM, Leung LR (2017) Changing circulation structure and precipitation characteristics in Asian monsoon regions: greenhouse warming vs. aerosol effects. Geosci Lett 4(1):1–11. https://doi.org/10.1186/s40562-017-0094-3
  • 32. Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the Collection MODIS dark-target aerosol products over land. Atmos Chem Phys 10(21):10399–10420. https://doi.org/10.5194/acp-10-10399-2010
  • 33. Lin L, Xu Y, Wang Z, Diao C, Dong W, Xie SP (2018) Changes in extreme rainfall over India and China attributed to regional aerosol-cloud interaction during the late 20th century rapid industrialization. Geophys Res Lett 45(15):7857–7865. https://doi.org/10.1029/2018GL078308
  • 34. Manoj MG, Lee SS, Li Z (2021) Competing aerosol effects in triggering deep convection over the Indian Region. Clim Dyn 56(5):1815–1835. https://doi.org/10.1007/s00382-020-05561-3
  • 35. Madhura RK, Krishnan R, Revadekar JV, Mujumdar M, Goswami BN (2015) Changes in western disturbances over the Western Himalayas in a warming environment. Clim Dyn 44(3–4):1157–1168. https://doi.org/10.1007/s00382-014-2166-9
  • 36. Maharana P, Agnihotri R, Dimri AP (2021) Changing Indian monsoon rainfall patterns under the recent warming period 2001–2018. Clim Dyn. https://doi.org/10.1007/s00382-021-05823-8
  • 37. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259. https://doi.org/10.2307/1907187
  • 38. Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297(5590):2250–2253. https://doi.org/10.1126/science.1075159
  • 39. Ming Y, Ramaswamy V (2011) A model investigation of aerosol-induced changes in tropical circulation. J Clim 24(19):5125–5133. https://doi.org/10.1175/2011JCLI4108.1
  • 40. Moorthy KK, and Satheesh SK (2011) Black carbon aerosols over India. UNEP’s Black Carbon e-Bulletin, 3: 1–3. http://www.rrcap.ait.ac.th/abc/Newsletter/Black%20Carbon%20e-Bulletin,%20December%202011.pdf
  • 41. Moorthy KK, Suresh Babu S, Manoj MR, Satheesh SK (2013) Buildup of aerosols over the Indian Region. Geophys Res Lett 40(5):1011–1014. https://doi.org/10.1002/grl.50165
  • 42. Pandey SK, Vinoj V, Landu K, Babu SS (2017) Declining pre-monsoon dust loading over South Asia: signature of a changing regional climate. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-16338-w
  • 43. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. PNAS 102(15):5326–5333. https://doi.org/10.1073/pnas.0500656102
  • 44. Ramachandran S, Cherian R (2008) Regional and seasonal variations in aerosol optical characteristics and their frequency distributions over India during 2001–2005. J Geophys Res: Atmos 27. https://doi.org/10.1029/2007JD008560
  • 45. Ramachandran S, Kedia S (2013) Aerosol, clouds and rainfall: inter-annual and regional variations over India. Clim Dyn 40(7–8):1591–1610. https://doi.org/10.1007/s00382-012-1594-7
  • 46. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002. https://doi.org/10.1038/nature08238
  • 47. Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN (2015) Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat Commun 6(1):7423. https://doi.org/10.1038/ncomms8423
  • 48. Samset BH, Lund MT, Bollasina M, Myhre G, Wilcox L (2019) Emerg Asian Aerosol Patterns Nat Geosci 12(8):582–584. https://doi.org/10.1038/s41561-019-0424-5
  • 49. Sarangi C, Tripathi SN, Kanawade VP, Koren I, Pai DS (2017) Investigation of the aerosol–cloud–rainfall association over the Indian summer monsoon region. Atmos Chem Phys 17(8):5185–5204. https://doi.org/10.5194/acp-17-5185-2017
  • 50. Sarangi C, Tripathi SN, Qian Y, Kumar S, Ruby Leung L (2018) Aerosol and urban land use effect on rainfall around cities in Indo-Gangetic Basin from observations and cloud resolving model simulations. J Geophys Res Atmos 123(7):3645–3667. https://doi.org/10.1002/2017JD028004
  • 51. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389. https://doi.org/10.2307/2285891
  • 52. Shaheen A, Wu R, Lelieveld J, Yousefi R, Aldabash M (2021) Winter AOD trend changes over the Eastern Mediterranean and Middle East region. Int J Climatol. https://doi.org/10.1002/joc.7139
  • 53. Solmon F, Nair VS, Mallet M (2015) Increasing Arabian dust activity and the Indian summer monsoon. Atmos Chem Phys 15(14):8051–8064. https://doi.org/10.5194/acp-15-8051-2015
  • 54. Streets DG, Yu C, Wu Y, Chin M, Zhao Z, Hayasaka T, Shi G (2008) Aerosol trends over China, 1980–2000. Atmos Res 88(2):174–182. https://doi.org/10.1016/j.atmosres.2007.10.016
  • 55. Tyagi B, Choudhury G, Vissa NK, Singh J, Tesche M (2021) Changing air pollution scenario during COVID-19: Redefining the hotspot regions over India. Environ Pollut 271:116354. https://doi.org/10.1016/j.envpol.2020.116354
  • 56. Vinoj V, Rasch PJ, Wang H, Yoon JH, Ma PL, Landu K, Singh B (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci 7(4):308–313. https://doi.org/10.1038/ngeo2107
  • 57. Vishnu S, Francis PA, Shenoi SSC, Ramakrishna SSVS (2016) On the decreasing trend of the number of monsoon depressions in the Bay of Bengal. Environ Res Lett 11(1):014011. https://doi.org/10.1088/1748-9326/11/1/014011
  • 58. Vissa NK, Anandh PC, Behera MM, Mishra S (2019) ENSO-induced groundwater changes in India derived from GRACE and GLDAS. J Earth Syst Sci 128(5):115. https://doi.org/10.1007/s12040-019-1148-z
  • 59. Wang C, Kim D, Ekman AM, Barth MC, Rasch PJ (2009) Impact of anthropogenic aerosols on Indian summer monsoon. Geophys Res Lett. https://doi.org/10.1029/2009GL040114
  • 60. Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, Li H, Li X, Peng L, Qi J, Yan L (2018) Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos Chem Phys 18(19):14095–14111. https://doi.org/10.5194/acp-18-14095-2018
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11fa3d86-1afb-4ca5-a9f8-060a1ea100f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.