PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced thermal conductivity of graphene nanoplatelets epoxy composites

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Efficient heat dissipation from modern electronic devices is a key issue for their proper performance. An important role in the assembly of electronic devices is played by polymers, due to their simple application and easiness of processing. The thermal conductivity of pure polymers is relatively low and addition of thermally conductive particles into polymer matrix is the method to enhance the overall thermal conductivity of the composite. The aim of the presented work is to examine a possibility of increasing the thermal conductivity of the filled epoxy resin systems, applicable for electrical insulation, by the use of composites filled with graphene nanoplatelets. It is remarkable that the addition of only 4 wt.% of graphene could lead to 132 % increase in thermal conductivity. In this study, several new aspects of graphene composites such as sedimentation effects or temperature dependence of thermal conductivity have been presented. The thermal conductivity results were also compared with the newest model. The obtained results show potential for application of the graphene nanocomposites for electrical insulation with enhanced thermal conductivity. This paper also presents and discusses the unique temperature dependencies of thermal conductivity in a wide temperature range, significant for full understanding thermal transport mechanisms.
Wydawca
Rocznik
Strony
382--389
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
autor
  • ABB Corporate Research Center, Krakow, Poland
autor
  • Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
  • Department of Materials and Manufacturing Technology, High Voltage Engineering Division, Chalmers University of Technology, Gothenburg, Sweden
autor
  • ABB Corporate Research Center, Krakow, Poland
autor
  • ABB Corporate Research Center, Krakow, Poland
autor
  • Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
Bibliografia
  • [1] BALANDIN A., Nat. Mater., 10 (2011), 569.
  • [2] NOVOSELOV K.S., GEIM A.K., MOROZOV S.V., JIANG D., ZHANG Y., DUBONOS S.V., GRIGORIEVA I.V., FIRSOV A.A., Science, 306 (2004), 666.
  • [3] SARTRE V., LALLEMAND M., Appl. Therm. Eng., 21 (2001), 221.
  • [4] QIAN R., YU J., WU C., ZHAI X., JIANG P., RSC Adv., 3 (2013), 17373.
  • [5] CHATTERJEE S., NAFEZAREFI F., TAI N.H., SCHLAGENHAUF L., N¨UESCH F.A., CHU B.T.T., Carbon, 50 (2012), 5380.
  • [6] GASKA K., RYBAK A., KAPUSTA C., SEKULA R., SIWEK A., Polym. Advan. Technol., 26 (2015), 26.
  • [7] SHAHIL K.M.F., BALANDIN A.A., Nano Lett., 12 (2012), 861.
  • [8] KING J.A., VIA M.D., MORRISON F.A., WIESE K.R., BEACH E.A., CIESLINSKI M.J., BOGUCKI G.R., J. Compos. Mater., 46 (2012), 1029.
  • [9] ZHAI W., SHI X., WANG M., XU Z., YAO J., SONG S., WANG Y., ZHANG Q., J. Compos. Mater., 48 (2014), 3727.
  • [10] CHU K., JIA C., LI W., Appl. Phys. Lett., 101 (2012), 121916.
  • [11] SONG S., PARK K., KIM B., CHOI Y., JUN G., LEE D., KONG B., PAIK K., JEON S., Adv. Mater., 25 (2013), 732.
  • [12] WANG Y., YU J., DAI W., SONG Y., WANG D., ZENG L., JIANG N., Polym. Composite., 36 (2015), 556.
  • [13] KAUSAR A., ANWAR Z., MUHAMMAD B., Polym.- Plast. Technol. Eng, 55 (2016), 1192.
  • [14] YU A., RAMESH P., ITKIS M.E., BEKYAROVA E., HADDON R.C., J. Phys. Chem. C, 111 (2007), 7565.
  • [15] WEI J., VO T., INAM F., RSC Adv., 5 (2015), 73510.
  • [16] WANG F., DRZAL L.T., QIN Y., HUANG Z., J. Mater. Sci., 50 (2015), 1082.
  • [17] CHATTERJEE S., WANG J.W., KUO W.S., TAI N.H., SALZMANN C., LI W.L., HOLLERTZ R., N¨UESCH F.A., CHU B.T.T., Chem. Phys. Lett., 531 (2012), 6.
  • [18] BALANDIN A.A., GHOSH S., BAO W., CALIZO I., TEWELDEBRHAN D., MIAO F., LAU C.N., Nano Lett., 8 (2008), 902.
  • [19] NIKA D., POKATILOV E., ASKEROV A., BALANDIN A., Phys. Rev. B, 79 (2009), 155413.
  • [20] GHOSH S., BAO W., NIKA D.L., SUBRINA S., POKTILOV E.P., LAU C.N., BALANDIN A.A., Nat. Mater., 9 (2010), 555.
  • [21] PATON K.R., VARRLA E., BACKES C., SMITH R.J., KHAN U., O’NEILL A., BOLAND C., LOTYA M., ISTRATE O.M., KING P., HIGGINS T., BARWICH S., MAY P., PUCZKARSKI P., AHMED I., MOEBIUS M., PETTERSSON H., LONG E., COELHO J., O’BRIEN S.E., MCGUIRE E.K., SANCHEZ B.M., DUESBERG G.S., MCEVOY N., PENNYCOOK T.J., DOWNING C., CROSSLEY A., NICOLOSI V., COLEMAN J.N., Nat. Mater., 13 (2014), 624.
  • [22] YI M., SHEN Z., J. Mater. Chem. A, 3 (2015), 11700.
  • [23] LIU L., SHEN Z., YI M., ZHANG X., MA S., RSC Adv., 4 (2014), 36464.
  • [24] SONG N., JIA J., WANG W., GAO Y., ZHAO Y., CHEN Y., Chem. Eng. J., 298 (2016), 198.
  • [25] WANG S., TAMBRAPARNI M., QIU J., TIPTON J., DEAN D., Macromolecules, 42 (2009), 5251.
  • [26] PARK W., HU J., JAUREGUI L.A., RUAN X., CHEN Y.P., Appl. Phys. Lett., 104 (2014), 113101.
  • [27] RAMIREZ C., FIGUEIREDO F.M., MIRANZO P., POZA P., OSENDI M.I., Carbon, 50 (2012), 3607.
  • [28] GU J., XIE C., LI H., DANG J., GENG W., ZHANG Q., Polym. Composite, 35 (2013), 1087.
  • [29] SUN Y.-H., XIONG W.-H., LI C.-H., T. Nonferr. Metal. Soc., 20 (2010), 624.
  • [30] CHOI S., KIM J., Compos. Part B-Eng., 51 (2013), 140
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11f9212c-b600-4f83-8297-943d49953eed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.