PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Stress loading effect research of plastic damage materials based on D-SAP and finite element analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study mainly analyzes the stress loading effect of current plastic damaged materials and investigates the stress changes during plastic material damage. The stress structure of the material is analyzed using D-SAP software and the finite element analysis. A new analysis system for plastic damage materials is established. The new system can analyze the damage stress and rigidity magnitude of plastic materials. These studies confirm that new system software can to some extent complete the analysis of stress loading effects on plastic damaged materials. The simulation curve of the software is basically consistent with the experimental values. When compared with traditional software for testing, the new software shows significantly better performance in simulating stress situations and accuracy compared to traditional analysis and simulation software. D-SAP and Digimat software show different deviations during testing. D-SAP has the smallest stress variation, while Digimat strain and stress testing has a larger deviation. In the stiffness test, the deviation between the two software is between 2.04% and 5.3%. In multi-axis pressure testing, D-SAP is consistent with the test values. Therefore, the software used in this study has a better effect on analyzing the stress loading effect of the material, and the deviation between the tested stress and stiffness is smaller. This provides a new direction for stress analysis of materials.
Rocznik
Strony
99--112
Opis fizyczny
Bibliogr. 21 poz., il., tab.
Twórcy
autor
  • School of CML Engineering Architecture, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, China
autor
  • Department of Technology Development, Dongyang Third Construction Engineering Co., Ltd, Zhejiang Dongyang, China
autor
  • College of Civil Engineering, Zhejiang University of Technology, Hangzhou, China
Bibliografia
  • [1] C. Cheng, W. Pan, Y. Huang, and Z. Niu, “Influence of geometry and material on the stress intensity of an interfacial crack propagating from a bi-material notch”, Engineering Analysis with Boundary Elements, vol. 111, no. 10, pp. 206-211, 2020, doi: 10.1016/j.enganabound.2019.10.016.
  • [2] T. Bhattacharyya, A.R. Jacob, G. Petekidis, and Y.M. Joshi, “On the nature of flow curve and categorization of thixotropic yield stress materials”, Journal of Rheology, vol. 67, no. 2, pp. 461-477, 2023, doi: 10.1122/8.0000558.
  • [3] Y.J. Song, M.D. Yi, G.Q. Zhang, et al., “Design and synthesis of a novel ceramic coating-like tool material”, Ceramics International, vol. 47, no. 3, pp. 4206-4216, 2020, doi: 10.1016/j.ceramint.2020.09.299.
  • [4] R.M. Aspden, “Fibre stress and strain in fibre-reinforced composites”, Journal of Materials Science, vol. 29, pp. 1310-1318, 1994, doi: 10.1007/BF00975081.
  • [5] Y. Zhou, G. Wu, S. Wang, B. Huang, F.S. Wang, and Z. Wang, “Thermal stress performance of glazed units contained phase change material”, Energy Exploration and Exploitation, vol. 39, no. 6, pp. 1973-1992, 2021, doi: 10.1177/01445987211015366.
  • [6] F. Auricchio, E. Bonetti, M. Carraturo, D. Hoemberg, A. Reali, and E. Rocca, “A phase-field based gradedmaterial topology optimization with stress constraint”, Mathematical Models and Methods in Applied Sciences, vol. 30, no. 8, pp. 1461-1483, 2020, doi: 10.1142/S0218202520500281.
  • [7] A. Kumar, R. Ghosh, and R. Kumar, “Effects of interfacial crack and implant material on mixed-mode stress intensity factor and prediction of interface failure of cemented acetabular cup”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 108, no. 5, pp. 1844-1856, 2020, doi: 10.1002/jbm.b.34526.
  • [8] A.A. Oyeniran and D.S. Aziaka, “Residual stress consideration in fatigue damage of offshore wind turbine monopiles: To be or not to be?", World Journal of Mechanics, vol. 10, no. 4, pp. 39-52, 2020, doi: 10.4236/wjm.2020.104004.
  • [9] J. Chen, Y.W. Wang, R.Y. Zheng, and X.F. Li, “Mode-III interface crack in a bi-material with initial stress and couple stress”, Engineering Fracture Mechanics, vol. 281, no. 2, pp. 1-20, 2023, doi: 10.1016/j.engfracmech.2023.109135.
  • [10] I.R. Siqueira, M. Pasquali, and P.R.D.S. Mendes, “Couette flows of a thixotropic yield-stress material: Performance of a novel fluidity-based constitutive model”, Journal of Rheology, vol. 64, no. 4, pp. 889-898, 2020, doi: 10.1122/8.0000041.
  • [11] J. Chen, W. Yao, and D. Gao, “Fatigue life evaluation of tension-compression asymmetric material using local stress-strain method", Fatigue & Fracture of Engineering Materials & Structures, vol. 43, no. 9, no. 1994-2005, 2020, doi: 10.1111/ffe.13279.
  • [12] H.F. Li, S.P. Yang, P. Zhang, Y.Q. Liu, B. Wang, and Z.F. Zhang, “Material-independent stress ratio effect on the fatigue crack growth behavior”, Engineering Fracture Mechanics, vol. 259, no. 1, pp. 10-20, 2022, doi: 10.1016/j.engfracmech.2021.108116.
  • [13] X. Wang, Q. Meng, and W. Hu, “Numerical analysis of low cycle fatigue for welded joints considering welding residual stress and plastic damage under combined bending and local compressive loads”, Fatigue & Fracture of Engineering Materials & Structures, vol. 43, no. 5, pp. 1064-1080, 2020, doi: 10.1111/ffe.13216.
  • [14] H. Matsuoka, T. Otani, and S. Fukui, “Stress distributions in an elastic body due to molecular interactions considering one-dimensional periodic material distribution based on Mindlin’s solution”, Microsystem Technologies, vol. 26, no. 1, pp. 139-156, 2020, doi: 10.1007/s00542-019-04537-6.
  • [15] L. Hassini, “3D model simulating the hydro-mechanical state of unsaturated and deformable material during hot air drying”, Hydraulic Science and Ocean Engineering, vol. 2, no. 1, pp. 27-32, 2020, doi: 10.30564/hsme.v2i1.1598.
  • [16] S. Tu, X. Ren, J. He, and Z. Zhang, “Stress-strain curves of metallic materials and post-necking strain hardening characterization: A review", Fatigue & Fracture of Engineering Materials & Structures, vol. 43, no. 1, pp. 3-19, 2020, doi: 10.1111/ffe.13134.
  • [17] D.S. Stewart and K. Lee, “Modeling the thermcmechanicalhemical behavior of condensed phase reactive materials”, Propellants Explosives Pyrotechnics, vol. 45, no. 2, pp. 270-283, 2020, doi: 10.1002/prep.201900221.
  • [18] H. Kang, P. He, C. Zhang, D. Ying, H. Lv, M. Zhang, and D. Yang, “Stress-strain and burst failure analysis of fiber wound composite material high-pressure vessel”, Polymers and Polymer Composites, vol. 29, no. 8, pp. 1291-1303, 2021, doi: 10.1177/0967391120965387.
  • [19] A.V. Pyatigorets and S.G. Mogilevskaya, “Evaluation of effective transverse mechanical properties of transversely isotropic viscoelastic composite materials”, Journal of Composite Materials, vol. 45, no. 25, pp. 2641-2658, 2011, doi: 10.1177/0021998311401091.
  • [20] M. Goldyn, “Application of the critical shear crack theory for calculation of the punching shear capacity of lightweight aggregate concrete slabs”, Archives of Civil Engineering, vol. 69, no. 1, pp. 55-70, 2023, doi: 10.24425/ace.2023.144159.
  • [21] H. Cui, J. Xia, L.Wu, and M. Xiao, “Reinforcement layout design of three-dimensional members under a state of complex stress”, Archives of Civil Engineering, vol. 69, no. 1, pp. 421-436, 2023, doi: 10.24425/ace.2023.144181.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11f4d080-63e6-412d-a296-542400812c9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.