PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ADDP : Anomaly Detection Based on Denoising Pretraining

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Acquiring labels in anomaly detection tasks is expensive and challenging. Therefore, as an effective way to improve efficiency, pretraining is widely used in anomaly detection models, which enriches the model's representation capabilities, thereby enhancing both performance and efficiency in anomaly detection. In most pretraining methods, the decoder is typically randomly initialized. Drawing inspiration from the diffusion model, this paper proposed to use denoising as a task to pretrain the decoder in anomaly detection, which is trained to reconstruct the original noise-free input. Denoising requires the model to learn the structure, patterns, and related features of the data, particularly when training samples are limited. This paper explored two approaches on anomaly detection: simultaneous denoising pretraining for encoder and decoder, denoising pretraining for only decoder. Experimental results demonstrate the effectiveness of this method on improving model’s performance. Particularly, when the number of samples is limited, the improvement is more pronounced.
Rocznik
Strony
719--726
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • School of Electronic Engineering, Huainan Normal University, China; College of Computing and Information Technologies, National University, Philippines
autor
  • School of Computer, Huainan Normal University, China
  • School of Electronic Engineering, Huainan Normal University, China
Bibliografia
  • [1] T. Fernando, H. Gammulle, S. Denman, S. Sridharan, and C. Fookes, "Deep Learning for Medical Anomaly Detection - A Survey," ACM Comput. Surv., vol. 54, no. 7, Jul. 2021. https://doi.org/10.1145/3464423
  • [2] P. Szolovits, R. S. Patil, and W. B. Schwartz, "Artificial Intelligence in Medical Diagnosis," Ann. Intern. Med., vol. 108, no. 1, pp. 80-87, 1988. https://doi.org/10.7326/0003-4819-108-1-80
  • [3] Y. Qiu, F. Lin, W. Chen, and M. Xu, "Pre-training in Medical Data: A Survey," Machine Intelligence Research, vol. 20, no. 2, pp. 147-179, Apr. 2023. https://doi.org/10.1007/s11633-022-1382-8
  • [4] G. E. Hinton and R. S. Zemel, "Autoencoders, Minimum Description Length and Helmholtz Free Energy," in Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS'93, Denver, Colorado, pp. 3-10. 1993
  • [5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative Adversarial Networks," Commun. ACM, vol. 63, no. 11, pp. 139-144, Nov. 2020. https://doi.org/10.1145/3422622
  • [6] Lu, Yuchen, and Peng Xu. "Anomaly detection for skin disease images using variational autoencoder." arXiv preprint arXiv:1807.01349 (2018). https://doi.org/10.48550/arXiv.1807.01349
  • [7] Zimmerer, David, et al. "Context-encoding variational autoencoder for unsupervised anomaly detection." arXiv preprint arXiv:1812.05941 (2018). https://doi.org/10.48550/arXiv.1812.05941
  • [8] H. Uzunova, S. Schultz, H. Handels, and J. Ehrhardt, "Unsupervised Pathology Detection in Medical Images Using Conditional Variational Autoencoders," International Journal of Computer Assisted Radiology and Surgery, vol. 14, no. 3, pp. 451-461, Mar. 2019. https://doi.org/10.1007/s11548-018-1898-0
  • [9] Schlegl, T., Seeböck, P., Waldstein, S. M., Langs, G., & Schmidt-Erfurth, U. (2019). f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical Image Analysis, 54, 30-44. https://doi.org/10.1016/j.media.2019.01.010
  • [10] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, "Dermatologist-level classification of skin cancer with deep neural networks," Nature, vol. 542, no. 7639, pp. 115-118, Feb. 2017. https://doi.org/10.1038/nature21056
  • [11] J. Turner, A. Page, T. Mohsenin, and T. Oates, "Deep Belief Networks used on High Resolution Multichannel Electroencephalography Data for Seizure Detection," arXiv:1708.08430, 2017. https://arxiv.org/abs/1708.08430
  • [12] G. Wang, W. Li, S. Ourselin, T. Vercauteren, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Springer Verlag, 2018), vol. 10670 LNCS, pp. 178-190. https://doi.org/10.1007/978-3-319-75238-9_16
  • [13] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. "Extracting and composing robust features with denoising autoencoders." In Proceedings of the 25th international conference on Machine learning, pp. 1096-1103. 2008. https://doi.org/10.1145/1390156.1390294
  • [14] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion," Journal of Machine Learning Research, vol. 11, no. 110, pp. 3371-3408, 2010. https://dl.acm.org/doi/10.5555/1756006.1953039
  • [15] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in neural information processing systems 33,6840-6851,2020.
  • [16] S. Bond-Taylor, A. Leach, Y. Long and C. G. Willcocks, "Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7327-7347, 1 Nov. 2022. https://doi.org/10.1109/TPAMI.2021.3116668
  • [17] P. Dhariwal and A. Nichol, "Diffusion Models Beat GANs on Image Synthesis," in Proc. Advances in Neural Information Processing Systems, pp. 8780-8794, Curran Associates, Inc., 2021.
  • [18] D. Kingma, T. Salimans, B. Poole, and J. Ho, "Variational Diffusion Models," in Advances in Neural Information Processing Systems, pp. 21696-21707, Curran Associates, Inc., 2021.
  • [19] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, "Diffusion Models: A Comprehensive Survey of Methods and Applications," arXiv preprint arXiv:2209.00796, 2023. https://doi.org/10.48550/arXiv.2209.00796
  • [20] J. Wyatt, A. Leach, S. M. Schmon and C. G. Willcocks, "AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 2022, pp. 649-655, https://doi.org/10.1109/CVPRW56347.2022.00080
  • [21] L. Zhou, H. Liu, J. Bae, J. He, D. Samaras, and P. Prasanna, "Self Pretraining with Masked Autoencoders for Medical Image Classification and Segmentation," arXiv preprint arXiv:2203.05573, 2023. https://doi.org/10.48550/arXiv.2203.05573
  • [22] Y. Tang et al., "Self-Supervised Pre-Training of Swin Transformers for 3D Medical Image Analysis," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 20698-20708, https://doi.org/10.1109/CVPR52688.2022.02007
  • [23] E. H. Eldeeb, A. M. Nagah, I. A. S. Amin, H. Kamel, and S. Fouad, "A Robust CNN Model for Diagnosis of COVID-19 Based on CT Scan Images and DL Techniques," in International Journal of Electronics and Telecommunications, vol. 68, no. 4, pp. 731-739, 2022. DOI: 10.24425/ijet.2022.143879. https://doi.org/10.24425/ijet.2022.143879
  • [24] A. van den Oord, Y. Li, and O. Vinyals, "Representation Learning with Contrastive Predictive Coding," arXiv preprint arXiv:1807.03748, 2019. https://doi.org/10.48550/arXiv.1807.03748
  • [25] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua Bengio, "Learning Deep Representations by Mutual Information Estimation and Maximization," 2019. https://doi.org/10.48550/arXiv.1808.06670
  • [26] P. Bachman, R. D. Hjelm, and W. Buchwalter, "Learning Representations by Maximizing Mutual Information Across Views," in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2019.
  • [27] J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, and Y. Zhou, "TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation," arXiv preprint arXiv:2102.04306, 2021. https://doi.org/10.48550/arXiv.2102.04306
  • [28] U. Baid, S. Ghodasara, S. Mohan, M. Bilello, E. Calabrese, E. Colak, K. Farahani et al., "The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification," arXiv preprint arXiv:2107.02314, 2021. https://doi.org/10.48550/arXiv.2107.02314
  • [29] Ronneberger, O., Fischer, P. and Brox, T. Ronneberger. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351:234-41. 2015. https://doi.org/10.1007/978-3-319-24574-4_28
  • [30] O. Oktay, J. Schlemper, L. Le Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz, B. Glocker, and D. Rueckert, "Attention U-Net: Learning Where to Look for the Pancreas," eprint arXiv:1804.03999, 2018. https://doi.org/10.48550/arXiv.1804.03999
  • [31] V. Badrinarayanan, A. Kendall and R. Cipolla, "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481-2495, 1 Dec. 2017. https://doi.org/10.1109/TPAMI.2016.2644615
  • [32] J. Shang, T. Ma, C. Xiao, and J. Sun, "Pre-training of Graph Augmented Transformers for Medication Recommendation," arXiv preprint arXiv:1906.00346, 2019. https://doi.org/10.48550/arXiv.1906.00346
  • [33] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," arXiv preprint arXiv:2010.11929, 2021. https://doi.org/10.48550/arXiv.2010.11929
  • [34] T. Reiss, N. Cohen, L. Bergman and Y. Hoshen, "PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation," 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, pp. 2805-2813, 2021. https://doi.org/10.1109/CVPR46437.2021.00283
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
2. This work was supported by the University Natural Science Foundation of Anhui Province (Grant No.2022AH051578,2023AH051551), Key Science Research Foundation of Huainan Normal University (Grant No.2022XJZD019) and Guiding Science and Technology Foundation of Huainan (Grant No.2020050).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11f29215-edd5-4675-bc4c-fd1a41a21867
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.