PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Degradation of La2Zr2O7+8YSZ composite TBC systems during oxidation at temperature of 1100°C

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Degradacja kompozytowych powłok TBC typu La2Zr2O7+8YSZ podczas utleniania w temperaturze 1100°C
Języki publikacji
EN
Abstrakty
EN
The degradation process of La2Zr2O7 + 8YSZ composite thermal barrier coatings (TBC) was presented in this paper. These systems were deposited by air plasma spraying (APS) on AMS 5599 alloy and on a NiCrAlY bond-coat. A scope of tests consisting of isothermal oxidation in air atmosphere at 1100°C for 500 h was performed. Detailed microstructural tests were carried out after 2, 10, 48, 175 and 500 hours of exposure. These tests included microstructure evaluation of a ceramic layer in all coating types, while particularly taking into account phenomena, which occur in a TGO (thermally growth oxide) zone. Evaluation of TGO zone growth was worked out and obtained results were compared with data for conventional TBC layers, which were deposited from 8YSZ powders and La2Zr2O7 respectively.
PL
W artykule przedstawiono proces degradacji kompozytowych powłokowych barier cieplnych typu La2Zr2O7 + 8YSZ. Powłoki zostały wykonane metoda natrysku cieplnego w powietrzu na stopie niklu typu AMS 5599 z międzywarstwą typu NiCrAlY. Powłoki poddano badaniom w postaci testu odporności na utlenianie izotermiczne w temperaturze 1100°C przez czas 500 h. Szczegółowe badania mikrostrukturalne wykonano po 2, 10, 48, 175 and 500 godzinach testu. Zakres zastosowanych badan obejmował ocenę mikrostrukturalną wszystkich powłok ze szczególnym uwzględnieniem zjawisk zachodzących w strefie TGO. Rozwój i morfologia strefy TGO została porównane do wyników uzyskanych dla standardowych powłok jednowarstwowych bazujących na ceramice typy 8YSZ i La2Zr2O7 .
Rocznik
Tom
Strony
130--134
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
  • Silesian University of Technology, Institute of Materials Science, 40-019 Katowice, Krasińskiego str. 8, Poland
  • Silesian University of Technology, Institute of Materials Science, 40-019 Katowice, Krasińskiego str. 8, Poland
  • Silesian University of Technology, Institute of Materials Science, 40-019 Katowice, Krasińskiego str. 8, Poland
Bibliografia
  • [1] Bakan E., D.E. Mack, G. Mauer, R. Vasen. 2014. “Gadolinium Zirconate/YSZ Thermal Barrier Coatings: Plasma Spraying, Microstructure, and Thermal Cycling Behavior”. Journal of the American Ceramic Society 97 : 4045-4051.
  • [2] Bansal N.P., D. Zhu D. 2007. “Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings”. Material Science and Engineering A 459 : 192-195.
  • [3] Cao X.Q., R. Vassen, D. Stover D. 2004. “Ceramic Materials for Thermal Barrier Coatings”. Journal of the European Ceramic Society 24 :1-10.
  • [4] Clarke D.R., C.G. Levi. 2003. “Materials Design for the Next Generation Thermal Barrier Coatings”. Annual Review of Materials Research 33 : 383-417.
  • [5] Jasik Anna. 2018. “The numerical analysis of stress and temperature distribution in a double-ceramic-layer (DCL) type of La2Zr2O7/8YSZ thermal barrier coatings (TBC) in as-sprayed state”. Ochrona przed Korozją 61 : 369-374.
  • [6] Lehmann H., D. Pitzer, G. Pracht, R. Vassen, D. Sato D. 2003. “Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System”. Journal of the American Ceramic Society 86 : 1338-1344.
  • [7] Levi C.G. 2004. “Emerging Materials and Processes for Thermal Barrier Systems”. Current Opinion in Solid State Materials Science 8 : 77-91.
  • [8] Maloney M.J. 2000. Thermal Barrier Coating Systems and Materials, U.S. Patent No. 6,117,560 .
  • [9] Maloney M.J. 2001.Thermal Barrier Coating Systems and Materials, U.S. Patent No. 6,177,200.
  • [10] Mikuśkiewicz Marta, Grzegorz Moskal, Anna Jasik. 2018. „Degradation of La2Zr2O7 thermal barrier coatings” Ochrona przed Korozją 61 : 155-158.
  • [11] Rai A.K., M.P. Schmitt, R.S. Bhattacharya, D. Zhu, D.E. Wolfe. 2015. “Thermal Conductivity and Stability of Multilayered Thermal Barrier Coatings under High Temperature Annealing Condition”. Journal of the European Ceramic Society 35 : 1605-1612.
  • [12] Schmitt M.P., A.K. Rai, R. Bhattacharya, D. Zhu, D.E. Wolfe. 2014. “Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores”. Surface and Coatings Technology 251 : 56-63.
  • [13] Schmitt M.P., J.M. Schreiber, A.K. Rai, T.J. Eden, D.E. Wolfe. 2017. “Development and Optimization of Tailored Composite TBC Design Architectures for Improved Erosion Durability”. Journal of Thermal Spray Technology 26 : 1062-1075.
  • [14] Schmitt M.P., J.L.Stokes, B.L. Gorin, A.K. Rai, D. Zhu, T.J. Eden, D.E. Wolfe. 2017. “Effect of Gd Content on Mechanical Properties and Erosion Durability of Sub-Stoichiometric Gd2Zr2O7”. Surface and Coatings Technology 313 : 177-183.
  • [15] Schmitt M.P., A.K. Rai, D. Zhu, M.R. Dorfman, D.E.Wolfe. 2015. “Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings”, Surface and Coatings Technology 279 : 44-52.
  • [16] Vassen R., X. Cao, F. Tietz, D. Basu, D. Stover. 2000. “Zirconates as New Materials for Thermal Barrier Coatings”. Journal of the American Ceramic Society 83 : 2023-2028.
  • [17] Wu J., Wei X., Padture N.P., Klemens P.G., Gell M., Miranzo P., Osendi M.I., 2002. “Low-Thermal-Conductivity Rare-Earth Zirconates for Potential Thermal-Barrier-Coating Applications”. Journal of the American Ceramic Society 85 : 3031-3035.
Uwagi
This work was supported by the National Science Centre, Poland, under grant number 11/030/PBU17/0176.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11eee95e-5f82-4a38-b8da-65101220f139
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.