Sylwia PERYT-STAWIARSKA, Halina MURASIEWICZ, Zdzisław JAWORSKI

e-mail: peryt@zut.edu.pl

Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska, Zachodniopomorski Uniwersytet Technologiczny, Szczecin

Analiza charakterystyk reologicznych płynu nienewtonowskiego na przykładzie wodnego roztworu soli sodowej karboksymetylocelulozy (CMC)

Wstęp

Charakterystyki reologiczne. Podczas wykonywania symulacji numerycznych procesów przemysłowych istnieje konieczność doboru odpowiedniego modelu reologicznego. W literaturze przedmiotu [*Kemblowski, 1973; Wilczyński, 2001*] znanych jest wiele modeli reologicznych, takich jak: potęgowy model *Ostwalda - de Waele'a*, model *Birda-Carreau-Yasudy*, model *Kleina*, model *Muenstedta* czy też model *Binghama*.

Problematyka związana z praktycznym zastosowaniem wybranych modeli reologicznych została poruszona przez [Kemblowskiego i in., 2001; Grzesika i in., 2004; Grzybowskiego, 2004; Pawelca i in., 2004; Bandulasena i in., 2011].

Przykładowo *Grzesik i in.* [2004] przeprowadzili matematyczną analizę zjawiska tiksotropii w modelowanym układzie roztworu skrobi ziemniaczanej i gumy ksantowej. Zaproponowali wykładniczy model reologiczny dla badanego układu oraz wyznaczyli jego parametry na podstawie wyników doświadczeń.

Z kolei *Grzybowski* [2004] zaproponował matematyczny model degradacji cząsteczki polimeru składającej się pierwotnie ze 100 segmentów na pojedyncze elementy. Rozpad cząstki był przypadkowy, a proces opisano układem równań różniczkowych.

Kemblowski i in. [2001] zastosowali model Crossa, który dobrze opisywał krzywe lepkości emulsji olej w wodzie.

Badania eksperymentalne wybranych roztworów opisano w kilku pracach. Na przykład *Mihranyan i in.* [2007] wykonali pomiary dla roztworu CMC i alg *Cladophora* dla niskich wartości stężenia: 0,025; 0,050; 0,100% wagowych. *Kim i Yoo* [2006] badali własności reologiczne gumy ksantowej dla zakresu stężeń od 0,2 do 0,8%. Z kolei *Bengoechea i in.* [2006] badali reologię i mikrostrukturę emulsji stabilizowanej glutenem i białkiem soi. W praktyce przemysłowej charakterystyki reologiczne wyznaczane są za pomocą reometrów. W pracy *Kiljańskiego i in.* [2009] przedstawiono przykłady inżynierskiego zastosowania wyników pomiarów reometrycznych. Z przeprowadzonego przeglądu literatury widać, że problematyka związana z wyznaczaniem charakterystyk reologicznych wybranych roztworów jest nadal aktualna.

Wodny roztwór soli sodowej karboksymetylocelulozy (CMC) jest bardzo często stosowany w przemyśle jako stabilizator lub zagęstnik. Ze względu na szerokie spektrum zastosowań bardzo ważna jest znajomość charakterystyk reologicznych tego związku. W zależności od stężenia oraz producenta soli sodowej karboksymetylocelulozy, roztwór CMC ma własności reologiczne charakterystyczne dla płynów newtonowskich -dla bardzo niskich stężeń roztworu [*Jaworski i Kiljański*, 2005] lub nienewtonowskich: rozrzedzanych ścinaniem lub lepkosprężystych [*Kästner i in. 1997; Jaworski i Kiljański*, 2005].

Dobór właściwego modelu, zwłaszcza dla substancji wykazujących silne własności nienewtonowskie, jest dużym problemem w przypadku symulacji CFD. Stąd wyznaczenie charakterystyk reologicznych wodnego roztworu CMC, a następnie dobór właściwego modelu postawiono za cel niniejszej pracy.

Badania doświadczalne

Aparatura pomiarowa

Charakterystyki reologiczne wyznaczono przy zastosowaniu reometru modułowego *MCR 301* firmy *Anton Paar* (Rys. 1) i układu stożekpłytka w rotacyjnym trybie pracy. Szerokość szczeliny pomiędzy stożkiem, a płytką wynosiła d = 0,048 mm.

Rys. 1. Układ pomiarowy: reometr modułowy *MCR 301* z układem stożekpłytka firmy *Anton Paar*

Pomiary wykonano w warunkach izotermicznych w zakresie szybkości ścinania od 0,01 do 500 s⁻¹. W układzie była utrzymywana stała temperatura dzięki zastosowaniu płytki *Peltiera*. Badania przeprowadzono w temperaturach równych: 20; 30; 40 i 50°C.

Materiały

Badano wodny roztwór soli sodowej karboksymetylocelulozy, CMC typ *Blanose 9H4* o stężeniu 1,0 oraz 2,0%.

Metodyka

W wyniku przeprowadzonych pomiarów otrzymano krzywe płynięcia i można było ocenić, jak zmieniała się (w danej temperaturze) lepkość badanego płynu wraz ze wzrostem szybkości ścinania.

Zbadano również dopasowanie modeli reologicznych, dostępnych w bibliotece programu *RHEOPLUS/32 Multi3 V2.81*, do otrzymanych eksperymentalnie krzywych płynięcia.

Wyniki i dyskusja

Krzywe płynięcia – wpływ temperatury

W celu jakościowej interpretacji otrzymanych wyników sporządzono wykresy zależności lepkości i naprężenia stycznego od szybkości ścinania dla skrajnych wartości temperatury, to jest 20 i 50°C oraz stężenia C_p roztworu CMC 1,0 i 2,0% (Rys. 2 i 3).

(1)

Stwierdzono, że wpływ temperatury na krzywe płynięcia był szczególnie silny dla roztworu o stężeniu 1,0% (Rys. 3), zwłaszcza przy małych szybkościach ścinania.

Z kolei dla roztworu 2,0% krzywe płynięcia praktycznie się ze sobą pokrywały w całym zakresie szybkości ścinania (od 0,2 do 500 1/s). Fakt ten można tłumaczyć konsystencją roztworu o stężeniu 2% – roztwór ten miał postać żelu. Należy również podkreślić, że dla niskiego zakresu szybkości ścinania lepkość roztworu 1% była około 50 razy mniejsza od lepkości roztworu 2%.

Współczynnik przesunięcia a_T krzywych lepkości względem siebie dla różnych temperatur może być obliczony z następującej zależności [*Wilczyński, 2001*]:

$$a_T = \frac{\eta(T)}{\eta(T_r)}$$

gdzie:

 $\eta(T)$ – lepkość roztworu w danej temperaturze,

 $\eta(T_r)$ – lepkośc w temperaturze odniesienia.

Współczynnik przesunięcia krzywej lepkości dla roztworu CMC o stężeniu 1,0% obliczony ze wzoru (1) wynosił $a_T = 0,51$ dla niskich wartości szybkości ścinania ($\dot{\gamma} = 0,01\pm1,0$ 1/s) oraz $a_T = 0,83$ dla wysokich wartości szybkości ścinania ($\dot{\gamma} = 100\pm500$ 1/s). Z kolei dla roztworu o stężeniu 2,0% współczynnik a_T był odpowiednio równy 0,71 i 0,91. W analizowanym przykładzie temperaturą odniesienia była temperatura 20°C, natomiast temperaturą obliczeniową 50°C.

Dobór modelu do eksperymentalnej krzywej płynięcia

Otrzymane eksperymentalnie krzywe płynięcia zostały porównane z modelem *Ostwalda-de Waele'a* oraz modelem wyrażonym w postaci wielomianu logarytmicznego czwartego stopnia.

Model Ostwalda-de Waele'a jest najprostszym modelem reologicznym, opracowanym dla uogólnionej cieczy newtonowskiej [*Wilczyński*, 2001]. W praktyce zastosowanie tego modelu umożliwia analityczne rozwiązanie bardzo wielu zagadnień opracowanych teoretycznie dla uogólnionych cieczy newtonowskich. Uogólnione równanie modelu *Ostwalda-de Waele'a* można zapisać jako [*Kemblowski*, 1973]

$$\tau = k \dot{\gamma}^n \tag{2}$$

gdzie:

k - współczynnik konsystencji [Pa·sⁿ],

n – wskaźnik-płynięcia [-].

W niniejszej pracy model *Ostwalda-de Waele'a* opisano zależnością $y = ax^b$ (3)

gdzie: a i b – współczynniki regresji odpowiadające parametrom n i k w równaniu Ostwalda-de Waele'a.

Krzywe płynięcia wyznaczone z modelu *Ostwalda-de Waele* 'a różniły się od danych eksperymentalnych (Rys. 4).

Model wyrażony w postaci wielomianu logarytmicznego miał najlepsze dopasowanie do danych doświadczalnych:

$$y = ax^{b}x^{c\ln(x)}x^{d(\ln(x))^{2}}x^{e(\ln(x))^{3}}$$
(4)

gdzie: a, b, c, d, e – współczynniki regresji.

Współczynniki regresji obliczone dla obu modeli oraz dla danych eksperymentalnych zostały zestawione w tab. 1.

Stwierdzono, że wpływ temperatury na krzywe płyecia był szczególnie silny dla roztworu o steżeniu w postaci wielomianu logarytmicznego 4. stopnia

Model	Roztwór CMC $C_p = 1,0\%$				Roztwór CMC $C_p = 2,0\%$		
	Temperatura				Temperatura		
	20°C	30°C	40°C	50°C	20°C	30°C	40°C
Model Ostwalda	a = 2,8891 b = 0,6267	a = 2,6180 b = 0,6387	a = 2,5147 b = 0,6464	a = 1,9184 b = 0,6419	a = 56,402 b = 0,4390	a = 49,797 b = 0,5085	a = 42,63 b = 0,3963
Wielomian log 4. st.	a = 4,1764 b = 0,7114 c = -0,0460 $d = -5,5 \cdot 10^{-4}$ $e = 2,5 \cdot 10^{-4}$	a = 3,6062 b = 0,7441 c = -0,0450 $d = -9,7 \cdot 10^{-4}$ $e = 2,6 \cdot 10^{-4}$	a = 3,4474 b = 0,7506 c = -0,0438 $d = -9,0 \cdot 10^{-4}$ $e = 2,2 \cdot 10^{-4}$	a = 2,4115 b = 0,7414 c = -0,0354 $d = -1,8 \cdot 10^{-4}$ $e = 2,4 \cdot 10^{-5}$	a = 75,386 b = 0,3577 c = -0,0247 d = 0,0059 $e = -9,6 \cdot 10^{-4}$	a = 80,358 b = 0,3724 c = -0,0493 d = 0,0099 $e = -9,6 \cdot 10^{-4}$	a = 63,822 b = 0,3963 c = -0,0375 d = 0,0057 $e = -4,7 \cdot 10^{-4}$

Wnioski

W pracy przedstawiono w postaci krzywych płynięcia wyniki badań doświadczalnych uzyskanych w reometrze modułowym *MCR 301*.

W zakresie od 20 do 50°C stwierdzono istotny wpływ temperatury na zmianę lepkości roztworu CMC o stężeniu 1,0%. Natomiast dla roztworu CMC o stężeniu 2,0% wpływu temperatury na własności reologicznego nie ustalono.

Zbadano również dopasowanie modeli do danych doświadczalnych. Stwierdzono najlepsze dopasowanie dla modelu wyrażonego w postaci wielomianu logarytmicznego 4. stopnia. Model ten w praktyce może być zaimplementowany do obliczeń CFD przede wszystkim dla roztworu o stężeniu 1,0%.

LITERATURA

- Bandulasena H.C.H, Zimmerman W.B., Ree J.M., 2011. An inverse method for rheometry of power-law fluids. *Meas. Sci. Technol.*, 22, 125402. DOI: 10.1088/0957-0233/22/12/125402
- Bengoechea C., Cordobés F., Guerrero A., 2006. Rheology and microstructure of gluten and soya-based o/w emulsions. Rheol. Acta 46, 13-21. DOI: 10.1007/ s00397-006-0102-6
- Grzesik M., Ptaszek A., Ptaszek P., Maryańczyk A., 2004. Model reologiczny wodnej mieszaniny skrobi ziemniaczanej i gumy ksantanowej. *Inż. Chem. Proc.*, 25, 933-938
- Grzybowski P., 2004. Model termicznej degradacji polimerów. Inż. Chem. Proc., 25, 951-956
- Jaworski Z., Kiljański T., 2005. O charakterystykach reologicznych cieczy modelowych rozrzedzanych ścinaniem, *Inż. Chem. Proc.*, 26, 513-522
- Kästner U., Hoffmann H., Dönges R., Hilbig J., 1997. Structure and solution properties of sodium carboxymethyl cellulose. *Colloids Surf.*, **123-124**, 307-328. DOI: 10.1016/S0927-7757(96)03786-7
- Kembłowski Z., 1973. Reometria płynów nienewtonowskich, WNT, Warszawa
- Kembłowski Z., Sęk J., Krynke K., 2001. Własności reologiczne emulsji typu olej w wodzie w funkcji jej struktury, *Inż. Chem. Proc.*, 22, 3C, 711-716
- Kiljański T., Dziubiński M., Sęk J., Antosik K., 2009. Wykorzystanie pomiarów właściwości reologicznych płynów w praktyce inżynierskiej. EKMA, Warszawa
- Kim C., Yoo B., 2006. Rheological properties of rice starch–xanthan gum mixtures. J. Food Eng., 75, 120-128. DOI: 10.1016/j.jfoodeng.2005.04.002
- Mihranyan A., Edsman K., Strømme M., 2007. Rheological properties of cellulose hydrogels prepared from Cladophora cellulose powder. *Food Hydrocolloids*, 21, 267-272. DOI: 10.1016/j.foodhyd.2006.04.003
- Pawelec M.K., Sosnowski T.R., Matyja O., 2004. Wyznaczanie lepkości i sprężystości dylatacyjnej monowarstwy surfaktantu na powierzchni cieczy w wadze Langmuira-Wilhelmy'ego. *Inż. Chem. Proc.* 25, 1449-1454
- Wilczyński K., 2001. Reologia w przetwórstwie tworzyw sztucznych, WNT, Warszawa

Praca była finansowana ze środków budżetowych na naukę w latach 2010-2013 jako projekt badawczy nr 3741/B/H03/2010/39.

Autorzy pracy składają serdeczne podziękowanie Panu Dyrektorowi K. Antosikowi z firmy EKMA za udostępnienie reometru MCR 301.