Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The first simulation consists of a partial cut-out of gas flow canal between the heat exchanger fins. The simulation is steady state and mainly provides the information about the heat transfer coefficient and pressure drop across the canal. The second simulation takes into account the complete system of rotary heat exchanger. It is a transient simulation with moving mesh. Then the heat transfer and air flow parameters are presented as a porous volume with a heat transfer model and rotational multi zone interface conditions. This simplification is accurate providing much better performance as the number of mesh nodes is much smaller. The methodology of the model setup is presented.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
20--28
Opis fizyczny
Bibliogr. 12 poz., fig., tab.
Twórcy
autor
- Lublin University of Technology, 38D Nadbystrzycka Str. 20-618 Lublin
Bibliografia
- 1. Alekseev, R. A., Kostukov, A. V., Makarov, A. R., & Merzlikin V. G. (2016). Simulation of Characteristics of Thermo-Hydraulic Process in Porous-Net Matrix of Rotary Heat Exchanger. Global Journal of Pure and Applied Mathematics, 12(4), 2829–2838.
- 2. Alonso, M. J., Lui, P., Mathisen, H. M., Ge, G., & Simonson, C. (2015). Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries. Building and Environment, 84, 228-237. doi:10.1016/j.buildenv.2014.11.014
- 3. Ansys. (n.d.). Program documentation.
- 4. Campo, A. (2012). A new 1-D composite lumped model facilitates the algebraic calculation of local temperatures, mean temperatures, and total heat transfer in simple bodies. Heat Mass Transfer, 48(9), 1495–1504. doi:10.1007/s00231-012-0994-x
- 5. Cengel, Y. A., & Ghajar, A. J. (2014). Heat and Mass Transfer: Fundamentals & Applications (5 ed.). McGraw-Hill.
- 6. Ciofalo, M., Stasiek, J., & Collins, M. W. (1996). Investigation of flow and heat transfer in corrugated passages—II. Numerical simulations. International Journal of Heat and Mass Transfer, 39(1), 165–192. doi:10.1016/S0017-9310(96)85014-9
- 7. Grzebielec, A., Rusowicz, A., & Rucinski, A. (2014). Analysis of the performance of the rotary heat exchanger in the real ventilation systems. The 9th International Conference. Environmental Engineering, VGTU, Vilno. doi:10.3846/enviro.2014.259
- 8. Mahesh, S., Jayaraman, B., & Madhumitha, R. (2017). Analysis of Air-to-Air Rotary Regenerator for HVAC Systems Using CFD. In Bajpai R., & Chandrasekhar U. (Eds.) Innovative Design and Development Practices in Aerospace and Automotive Engineering. Lecture Notes in Mechanical Engineering. (pp. 455–462). Springer. doi:10.1007/978-981-10-1771-1_49
- 9. Nasr, M. R., Fauchoux, M., Besant, R. W., & Simonson C. J. (2013). A review of frosting in air-to-air energy exchangers. Renewable and Sustainable Energy Reviews, 30, 538–554. doi:10.1016/j.rser.2013.10.038
- 10. Rotor. (n.d.). Retrieved November 1, 2016, from Rotor website, http://www.rotor.lublin.pl
- 11. Shah, R. K., & Sekulic, D. P. (2003). Fundamentals of Heat Exchanger Design. John Wiley & Sons.
- 12. Whitaker, S. (1985). Flow in porous media I: A theoretical derivation of Darcy's law. Transport Porous Media, 1(1), 3-25. doi:10.1007/BF01036523
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11d91490-93f0-426b-a016-ac7bf9d797fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.