PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new cross-saturated torque model of highly utilized synchronous reluctance machine

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new cross-saturated torque model of the synchronous reluctance machine (SynRM) including a direct incorporation of cross-saturation effects is presented. Direct-quadrature (d-q axes) flux linkages for both saturation and cross-saturation conditions, obtained experimentally through current decay test using open winding fixed rotor method, are accurately curve-fitted and linearization between the two extremes yielding analytical functions for cross-coupled d-q axes flux linkages. These flux linkages are used to achieve a cross-saturated flux linkage-based torque model for highly utilized SynRM. The accuracy of the developed torque model is evaluated by comparing with the experimentally measured torque of a 5.5 kW SynRM in a dynamometer test bench which also measures and account for the effect of iron losses. The close similarity of the experimental results with the developed model proves the accuracy of the model and its suitability for direct incorporation in control algorithms of advanced SynRM drives without the use of look-up tables.
Rocznik
Strony
109--121
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wz.
Twórcy
autor
  • Department of Electrical Engineering University of Nigeria, Nsukka
autor
  • Department of Electrical Engineering University of Nigeria, Nsukka
autor
  • Department of Electrical Engineering University of Nigeria, Nsukka
Bibliografia
  • [1] Ferrari M., Bianchi N., Doria A., Fornasiero E., Design of synchronous reluctance motor for hybrid electric vehicles, IEEE Transactions on Industrial Application, vol. 51, no. 4, pp. 3030–3040 (2015).
  • [2] Ikaheimo J., Kolehmainen J., Kansakangas T., Kivela V., Moghaddam R., Synchronous high-speed reluctance machine with novel rotor construction, IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2969–2975 (2014).
  • [3] Baek J., Bonthu S., Kwak S., Choi S., Optimal design of five phase permanent magnet assisted synchronous reluctance motor for low output torque ripple, Proceedings of the IEEE Energy Conversion & Expo (ECCE), Pittsburgh, USA, CD-ROM (2014).
  • [4] Zhang X., Foo G., Vilathgamuwa D., Maskell D., An improved robust field-weakening algorithm for direct-torque-controlled synchronous-reluctance-motor drives, IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 3255–3264 (2015).
  • [5] Qu Z., Tuovinen T., Hinkkanen M., Inclusion of magnetic saturation in dynamic models of synchronous reluctance motors, Proceedings of the 20th International Conference on Electrical Machines (ICEM), Marseille, France, pp. 994–1000 (2012).
  • [6] Foo G., Zhang X., Robust direct torque control of synchronous reluctance motor drives in the fieldweakening region, IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 1289–1298 (2017).
  • [7] Foo G., Zhang X., Robust constant switching frequency-based field-weakening algorithm for direct torque controlled reluctance synchronous motors, IEEE Transactions on Industrial Informatics, vol. 12, no. 4, pp. 1462–1473 (2016).
  • [8] Ferdous S., Garcia P., Oninda M., Hoque M., MTPA and field weakening control of synchronous reluctance motor, Proceedings of the 9th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, pp. 598–601 (2016).
  • [9] Chui M., Chiang J., Lee J., Gaing Z., Multi-objective optimization design of interior permanentmagnet synchronous motors for improving the effectiveness of field weakening control, Proceedings of the 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, pp. 517–521 (2014).
  • [10] Mingardi D., Morandin M., Bolognani S., Bianchi N., On the proprieties of the differential crosssaturation inductance in synchronous machines, IEEE Transactions on Industrial Application, vol. 53, no. 2. pp. 991–1000 (2016).
  • [11] Huang W., Zhang Y., Zhang X., Sun G., Accurate torque control of interior permanent magnet synchronous machine, IEEE Transactions on Energy Conversion, vol. 29, no. 1, pp. 29–37 (2014).
  • [12] Morales-Caporal R., Pacas M., Impact of the magnetic cross-saturation in a sensorless direct torque controlled synchronous reluctance machine based on test voltage signal injections, Proceedings of the 34th Annual Conference of IEEE Industrial Electronics (IECON 2008), Orlando Florida, USA, pp. 1234–1239 (2008).
  • [13] Armando E., Bojoi R., Guglielmi P., Pellegrino G., Pastorelli M., Experimental identification of the magnetic model of synchronous machines, IEEE Transactions on Industrial Application, vol. 49, no. 5, pp. 2116–2125 (2013).
  • [14] Rahman H., Hiti S., Identification of machine parameters of a synchronous motor, IEEE Transactions on Industrial Application, vol. 41, no. 2, pp. 557–565 (2005).
  • [15] Niazi P., Toliyat H., Online parameter estimation of permanent-magnet assisted synchronous reluctance motor, IEEE Transactions on Industrial Application, vol. 43, no. 2, pp. 609–615 (2007).
  • [16] Noguchi T., Kumakiri Y., On-line parameter identification of IPM motor using instantaneous reactive power for robust maximum torque per ampere control, Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, pp. 793–799 (2015).
  • [17] Ichikawa S., Tomita M., Doki S., Okuma S., Sensorless control of synchronous reluctance motors based on extended emf models considering magnetic saturation with online parameter identification, IEEE Transactions on Industrial Application, vol. 42, no. 5, pp. 1264–1274 (2006).
  • [18] Senjyu T., Kinjo K., Urasaki N., Uezato K., High efficiency control of synchronous reluctance motors using extended Kalman filter, IEEE Transactions on Industrial Electronics, vol. 50, no. 2, pp. 726–732 (2003).
  • [19] Kock H., Rix A., Kamper M., Optimal torque control of synchronous machines based on finite-element analysis, IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 413–419 (2010).
  • [20] Tahi S., Ibtiouen R., Finite element calculation of the dq-axes inductances and torque of synchronous reluctance motor, Proceedings of the IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Tunis, Tunisia, pp. 1–5 (2014).
  • [21] Boroujeni S., Bianchi N., Alberti L., Fast estimation of line-start reluctance machine parameters by finite element analysis, IEEE Transactions on Energy Conversion, vol. 26, no. 1, pp. 1–8 (2011).
  • [22] Ogbuka C., Nwosu C., Agu M., Dynamic and steady state performance comparison of line-start permanent magnet synchronous motors with interior and surface rotor magnets, Archives of Electrical Engineering, vol. 65, no. 1, pp. 105–116 (2016).
  • [23] Pillay P., Krishnan R., Modeling, simulation, and analysis of permanent magnet motor drives I: the permanent magnet synchronous motor drive, IEEE Transaction on Industrial application, vol. 25, pp. 265–273 (1989).
  • [24] Kellner S., Piepenbreier B., General PMSM d,q-model using optimized interpolated absolute and differential inductance surface, Proceedings of the IEEE International Electric Machines & Drives Conference (IEMDC 2011), Ontorio, Canada, pp. 212–217 (2011).
  • [25] Kilthau A., Pacas J., Parameter-measurement and control of the synchronous reluctance machine including cross saturation, Proceedings of the IEEE Thirty-Sixth IAS Annual Meeting Conference of the Industry Applications Society, Chicago, IL, USA, pp. 2302–2309 (2001).
  • [26] Saur M., Lehner B., Hentschel F., Gerling D., Lorenz R., DB-DTFC as loss minimizing control for synchronous reluctance drives, Proceedings of IEEE 41st Annual Conference of the Industrial Electronics Society (IECON 2015), Yokohama, Japan, pp. 1412–1417 (2015).
  • [27] Stumberger B., Stumberger G., Dolinar D., Hamler A., Trlep M., Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor, IEEE Transactions on Industrial Application, vol. 39, no. 5, pp. 1264–1271 (2003).
  • [28] Saur M., Ramos F., Perez A., Gerling D., Lorenz R.D., Implementation of deadbeat-direct torque andflux control for synchronous reluctance machines to minimize loss each switching period, Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, pp. 215–220 (2016).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11d6b386-1e6c-43d3-8e64-4b8262c3a1f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.