PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical and experimental study on the surface generation mechanism in shot peening

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shot peening is a common surface treatment technology for improving fatigue performance of component and is usually conducted after other manufacturing processes. The surface topography of shot peening directly affects the serve performance and has attracted much interest. To better understand surface generation during shot peening, an analytical model for predicting the peened surface topography was proposed by considering: (i) the random nature of the shot stream, such as the number of shots, spatial distribution, nonuniformity of shot size, and impact velocity; (ii) the overlap of dimples with initial surface and the cyclic hardening. The proposed model is verified by comparing the measured and simulated results. The model can better describe the details of the surface profile compared with the finite element method. It is found that the surface roughness Sa first increases and then decreases slowly with the increase of coverage. Besides, the peened surface of carburized and hardened gear steel shows the combined topography of grinding and shot peening. This work could provide a powerful package to efficiently predict the peened surface topography and guide industrial application in shot peening.
Rocznik
Strony
art. no. e111
Opis fizyczny
Bibliogr. 47., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, People’s Republic of China
  • College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People’s Republic of China
autor
  • State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, People’s Republic of China
  • College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People’s Republic of China
autor
  • State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, People’s Republic of China
  • College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People’s Republic of China
  • State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, People’s Republic of China
  • College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People’s Republic of China
autor
  • State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, People’s Republic of China
  • College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, People’s Republic of China
Bibliografia
  • 1. Zhou W, Tang J, Chen H, Shao W. A comprehensive investigation of surface generation and material removal characteristics in ultrasonic vibration assisted grinding. Int J Mech Sci. 2019;156:14-30. https://doi.org/10.1016/j.ijmecsci.2019.03.026.
  • 2. Zhang Y, Lai F, Qu S, Ji V, Liu H, Li X. Effect of shot peening on residual stress distribution and tribological behaviors of 17Cr2Ni-2MoVNb steel. Surf Coat Technol. 2020;386: 125497. https://doi.org/10.1016/j.surfcoat. 2020.125497.
  • 3. Bagherifard S, Fernandez-Pariente I, Ghelichi R, Guagliano M. Fatigue behavior of notched steel specimens with nanocrystallized surface obtained by severe shot peening. Mater Des. 2013;45:497-503. https://doi.org/10.1016/j.matdes.2012.09.025.
  • 4. Zhang J, Li W, Wang H, Song Q, Lu L, Wang W, Liu Z. A comparison of the effects of traditional shot peening and micro-shot peening on the scuffing resistance of carburized and quenched gear steel. Wear. 2016;368:253-7. https://doi.org/10.1016/j.wear.2016.09.029.
  • 5. Maleki E, Farrahi GH, Reza Kashyzadeh K, Unal O, Gugaliano M, Bagherifard S. Effects of conventional and severe shot peening on residual stress and fatigue strength of steel AISI 1060 and residual stress relaxation due to fatigue loading: experimental and numerical simulation. Met Mater Int. 2021;27:2575-91. https://doi.org/10.1007/s12540-020-00890-8.
  • 6. Maleki E, Unal O, Kashyzadeh KR. Effects of conventional, severe, over, and re-shot peening processes on the fatigue behavior of mild carbon steel. Surf Coat Technol. 2018;344:62-74. https://doi.org/10.1016/j.surfcoat.2018.02.081.
  • 7. Zhou W, Tang J, Shao W. Modelling of surface texture and parameters matching considering the interaction of multiple rotation cycles in ultrasonic assisted grinding. Int J Mech Sci. 2020;166: 105246. https://doi.org/10.1016/j.ijmecsci.2019.105246.
  • 8. Klotz T, Delbergue D, Bocher P, Levesque M, Brochu M. Surface characteristics and fatigue behavior of shot peened Inconel 718. Int J Fatigue. 2018;110:10-21. https://doi.org/10.1016/j.ijfatigue.2018.01.005.
  • 9. Wu D, Yao C, Zhang D. Surface characterization and fatigue evaluation in GH4169 superalloy: comparing results after finish turning; shot peening and surface polishing treatments. Int J Fatigue. 2018;113:222-35. https://doi.org/10.1016/j.ijfatigue.2018.04.009.
  • 10. Curtis S, De los Rios E, Rodopoulos C, Levers A. Analysis of the effects of controlled shot peening on fatigue damage of high strength aluminium alloys. Int J Fatigue. 2003;25:59-66. https://doi.org/10.1016/S0142-1123(02)00049-X.
  • 11. Yang C, Li M. 3D surface morphology and performance of TC17 processed by surface severe plastic deformation. Surf Coat Technol. 2020;397: 125995. https://doi.org/10.1016/j.surfc oat.2020.125995.
  • 12. Mohamed A-MO, Farhat Z, Warkentin A, Gillis J. Effect of a moving automated shot peening and peening parameters on surface integrity of Low carbon steel. J Mater Process Technol. 2020;277: 116399. https://doi.org/10.1016/j.jmatprotec.2019.116399.
  • 13. Nordin E, Alfredsson B. Experimental investigation of shot peening on case hardened SS2506 gear steel. Exp Tech. 2017;41:433-51. https://doi.org/10.1007/s40799-017-0183-4.
  • 14. Kumar D, Idapalapati S, Wang W, Child DJ, Haubold T, Wong CC. Microstructure-mechanical property correlation in shot peened and vibro-peened Ni-based superalloy. J Mater Process Technol. 2019;267:215-29. https://doi.org/10.1016/j.jmatprotec.2018.12.007.
  • 15. Llaneza V, Belzunce F. Study of the effects produced by shot peening on the surface of quenched and tempered steels: roughness, residual stresses and work hardening. Appl Surf Sci. 2015;356:475-85. https://doi.org/10.1016/j.apsusc.2015.08.110.
  • 16. Unal O. Optimization of shot peening parameters by response surface methodology. Surf Coat Technol. 2016;305:99-109. https://doi.org/10.1016/j.surfcoat.2016.08.004.
  • 17. Unal O, Maleki E. Shot peening optimization with complex decision-making tool: multi criteria decision-making. Measurement. 2018;125:133-41. https://doi.org/10.1016/j.measurement.2018.04.077.
  • 18. Miao H, Larose S, Perron C, Levesque M. On the potential applications of a 3D random finite element model for the simulation of shot peening. Adv Eng Softw. 2009;40:1023-38. https://doi.org/10.1016/j.advengsoft.2009.03.013.
  • 19. Mylonas G, Labeas G. Numerical modelling of shot peening process and corresponding products: residual stress, surface roughness and cold work prediction. Surf Coat Technol. 2011;205:4480-94. https://doi.org/10.1016/j.surfcoat.2011. 03.080.
  • 20. Sanjurjo P, Rodriguez C, Penuelas I, Garcia TE, Belzunce FJ. Influence of the target material constitutive model on the numerical simulation of a shot peening process. Surf Coat Technol. 2014;258:822-31. https://doi.org/10.1016/j.surfcoat.2014.07.075.
  • 21. Bagherifard S, Ghelichi R, Guagliano M. Numerical and experimental analysis of surface roughness generated by shot peening. Appl Surf Sci. 2012;258:6831-40. https://doi.org/10.1016/j.apsusc.2012.03.111.
  • 22. Liu H, Dong H, Tang J, Ding H, Shao W, Zhao J, Jiang T. Numerical modeling and experimental verification of surface roughness of 12Cr2Ni4A alloy steel generated by shot peening. Surf Coat Technol. 2021;422: 127538. https://doi.org/10.1016/j.surfcoat.2021.127538.
  • 23. Ghanbari S, Bahr DF. Predictions of decreased surface roughness after shot peening using controlled media dimensions. J Mater Sci Technol. 2020;58:120-9. https://doi.org/10.1016/j.jmst.2020.03.075.
  • 24. Wu J, Liu H, Wei P, Lin Q, Zhou S. Effect of shot peening coverage on residual stress and surface roughness of 18CrNiMo7-6 steel. Int J Mech Sci. 2020. https://doi.org/10.1016/j.ijmecsci.2020.105785.
  • 25. Lin Q, Liu H, Zhu C, Chen D, Zhou S. Effects of different shot peening parameters on residual stress, surface roughness and cell size. Surf Coat Technol. 2020. https://doi.org/10.1016/j.surfcoat.2020.126054.
  • 26. Gariepy A, Miao H, Levesque M. Simulation of the shot peening process with variable shot diameters and impacting velocities. Adv Eng Softw. 2017;114:121-33. https://doi.org/10.1016/j.advengsoft. 2017.06.011.
  • 27. Klemenz M, Schulze V, Rohr I, Lohe D. Application of the FEM for the prediction of the surface layer characteristics after shot peening. J Mater Process Technol. 2009;209:4093-102. https://doi.org/10.1016/j.jmatprotec.2008.10.001.
  • 28. Tu F, Delbergue D, Miao H, Klotz T, Brochu M, Bocher P, Levesque M. A sequential DEM-FEM coupling method for shot peening simulation. Surf Coat Technol. 2017;319:200-12. https://doi.org/10.1016/j.surfcoat.2017.03.035.
  • 29. Al-Obaid Y. Shot peening mechanics: experimental and theoretical analysis. Mech Mater. 1995;19:251-60. https://doi.org/10.1016/0167-6636(94)00036-G.
  • 30. Xiao X, Tong X, Sun Y, Li Y, Wei S, Gao G. An analytical model for predicting peening stresses with general peening coverage. J Manuf Process. 2019;45:242-54. https://doi.org/10.1016/j.jmapro.2019.06.029.
  • 31. Miao H, Larose S, Perron C, Levesque M. An analytical approach to relate shot peening parameters to Almen intensity. Surf Coat Technol. 2010;205:2055-66. https://doi.org/10.1016/j.surfcoat.2010.08.105.
  • 32. Sherafatnia K, Farrahi G, Mahmoudi A, Ghasemi A. Experimental measurement and analytical determination of shot peening residual stresses considering friction and real unloading behavior. Mater Sci Eng A. 2016;657:309-21. https://doi.org/10.1016/j.msea.2016.01.070.
  • 33. Sherafatnia K, Farrahi GH, Mahmoudi AH. Effect of initial surface treatment on shot peening residual stress field: analytical approach with experimental verification. Int J Mech Sci. 2018;137:171-81. https://doi.org/10.1016/j.ijmecsci.2018.01.022.
  • 34. Zhao J, Tang J, Ding H, Shao W, Zhao X, Liu H, Jiang T. A numerical and experimental investigation on the evolution of three-dimensional surface topography of 12Cr2Ni4A steel in shot peening. J Manuf Process. 2021;70:259-70. https://doi.org/10.1016/j.jmapro.2021.08.032.
  • 35. KlemenzM. Anwendung der Simulation der Randschichtausbildung beim Kugelstrahlen auf die Abschatzung der Schwingfestigkeit gekerbter Bauteile, Shaker. 2009.
  • 36. Hertz H. Uber die Beruhrung fester elastischer Korper. Journal fur die reine und angewandte Mathematik. 1882;92:22. https://doi.org/10.1515/crll.1882.92.156.
  • 37. Wang H, Yin X, Qi X, Deng Q, Yu B, Hao Q. Experimental and theoretical analysis of the elastic-plastic normal repeated impacts of a sphere on a beam. Int J Solids Struct. 2017;109:131-42. https://doi.org/10.1016/j.ijsolstr.2017. 01.014.
  • 38. Thornton C. Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. J Appl Mech. 1997;64:383-6. https://doi.org/10.1115/1.2787319.
  • 39. Gariepy A, Larose S, Perron C, Levesque M. Shot peening and peen forming finite element modelling-towards a quantitative method. Int J Solids Struct. 2011;48:2859-77. https://doi.org/10.1016/j.ijsolstr.2016.01.012.
  • 40. Xiao X, Tong X, Liu Y, Zhao R, Gao G, Li Y. Prediction of shot peen forming effects with single and repeated impacts. Int J Mech Sci. 2018;137:182-94. https://doi.org/10.1016/j.ijmec sci.2018.01.006.
  • 41. Kim T, Lee JH, Lee H, Cheong S-K. An area-average approach to peening residual stress under multi-impacts using a three-dimensional symmetry-cell finite element model with plastic shots. Mater Des. 2010;31:50-9. https://doi.org/10.1016/j. matdes.2009.07.032.
  • 42. Majzoobi G, Azadikhah K, Nemati J. The effects of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6. Mater Sci Eng A. 2009;516:235-47. https://doi.org/10.1016/j.msea.2009.03.020.
  • 43. Gonzalez J, Bagherifard S, Guagliano M, Pariente IF. Influence of different shot peening treatments on surface state and fatigue behaviour of Al 6063 alloy. Eng Fract Mech. 2017;185:72-81. https://doi.org/10.1016/j.engfracmech.2017.03.017.
  • 44. Yang F, Chen Z, Meguid S. Effect of initial surface finish on effectiveness of shot peening treatment using enhanced periodic cell model. Int J Mech Mater Des. 2015;11:463-78. https://doi.org/10.1007/s10999-014-9273-y.
  • 45. Palacios M, Bagherifard S, Guagliano M, Fernandez Pariente I. Influence of severe shot peening on wear behaviour of an aluminium alloy. Fatigue Fract Eng Mater Struct. 2014;37:821-9. https://doi.org/10.1111/ffe.12210.
  • 46. Zhao J, Tang J, Zhou W, Jiang T, Liu H, Xing B. Numerical modeling and experimental verification of residual stress distribution evolution of 12Cr2Ni4A steel generated by shot peening. Surf Coat Technol. 2021. https://doi.org/10.1016/j.surfcoat.2021.127993.
  • 47. Zhou W, Tang J, Shao W. Study on surface generation mechanism and roughness distribution in gear profile grinding. Int J Mech Sci. 2020;187: 105921. https://doi.org/10.1016/j.ijmec sci.2020.105921.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11d1fb39-ee69-41a3-ad1a-1ee6ee181360
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.