PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Hyper-Tolerance of Aquatic Plants to Metal Nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The estimation of the protein content and amino acid composition under the influence of metal nanoparticles (Mn, Cu, Zn, Ag) for seven species of aquatic macrophytes: Limnobium laevigatum (Humb. & Bonpl.ExWilld.), Pistia stratiotes L., Salvinia natans L., Elodea canadensis Michx., Najas guadelupensis (Spreng.) Magnus, Vallisneria spiralis L. and Riccia fluitans L. was conducted. The plants were exposed during 7 days on the experimental solutions of metal nanoparticles at the rate of 1 g of plant per 100 ml of the mixture of stock colloidal solutions of metal nanoparticles (Mn – 0.75 mg/l, Cu – 0.37 mg/l, Zn – 0.44 mg/l, Ag+, Ag2O – 0.75 mg/l) diluted 200 times. In the five investigated species, reduction of the protein content was observed. However, this indicator remained stable only in P. stratiotes (52 mg/ml) and, conversely, increased in V. spiralis (46 mg/ml to 51 mg/ml). The content of the studied amino acids in N. guadelupensis decreased by 46% (from 112.05 mmol/g to 60.15 mmol/g), in R. fluitans – by 44% (from 104.06 mmol/g to 58.25 mmol/g), in S. natans – by 23% (from 90.08 mmol/g to 69.59 mmol/g), in E. canadensis – by 10% (from 143.92 mmol/g to 129.4 mmol/g), and in P. stratiotes as well as in L. laevigatum – by 8% (from 210.65 mmol /g to 193.77 mmol/g and with 155.0 mmol/g to 142.60 mmol/g), but in V. spiralis, on the contrary, increased by 7% (from 91.31 mmol/g to 97.59 mmol/g). Changes in the composition and content of amino acids for each species of aquatic plant were analyzed. It was suggested that the studied plants, which belong to different families, have different defense mechanisms, according to which the amino acid composition of plants varies.
Rocznik
Strony
249--259
Opis fizyczny
Bibliogr. 60 poz., rys.
Twórcy
  • ESC, Institute of Biology and Medicine, Department Biology Plants, Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64/13, Kyiv 01601, Ukraine
  • ESC, Institute of Biology and Medicine, Department Biology Plants, Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64/13, Kyiv 01601, Ukraine
  • ESC, Institute of Biology and Medicine, Department Biology Plants, Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64/13, Kyiv 01601, Ukraine
  • ESC, Institute of Biology and Medicine, Department Biology Plants, Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64/13, Kyiv 01601, Ukraine
autor
  • ESC, Institute of Biology and Medicine, Department Biology Plants, Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64/13, Kyiv 01601, Ukraine
  • ESC, Institute of Biology and Medicine, Department Biology Plants, Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64/13, Kyiv 01601, Ukraine
  • Department Technology of Storage, Processing and Standardizations of Planting Products by Professor B.V. Lesik, National University of Life and Environmental Sciences of Ukraine, Geroiv Oboroni Str. 15, 03041 Kyiv, Ukraine
  • ESC, Institute of Biology and Medicine, Department Biology Plants, Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64/13, Kyiv 01601, Ukraine
Bibliografia
  • 1. Abdеlnaby, A.M., Egorov, M.A. 2012. Efficiency of diffent particle sizes of dried Salvinia natans in the removing of Cu (II) and oil pollutions from water. J. Water Chem Technol., 34, 143–161.
  • 2. Alvarado, S., Gu’edez, M., Lu’e-Mer’u, M.P., Nelson, G., Alvaro, A., Jes’us A.C., et al. 2008. Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor). Bioresour. Technol., 99, 8436–8440.
  • 3. Alvarez, S., Berla, B.M., Sheffield, J., Cahoon, R.E., Jez, J.M., Hicks, L.M. 2009. Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics., 9, 2419–2431. DOI: 10.1002/pmic.200800478
  • 4. Ashraf, M., Harris, P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci., 166, 3–16. DOI: 10.1016/j.plantsci.2003.10.024
  • 5. Aspinall, D., Paleg, L.G. 1981. Proline accumulation: physiological aspects. In: Aspinall D, Paleg L.G, editors. The physiology and biochemistry of drought resistance in plants. Australia: Academic Press, 205–240.
  • 6. Baker, A.J.M., Mc Grath, S.P., Reeves, R.D., Smith, J.A.C. 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N., Bañuelos G., editors. Phytoremediation of Contamined Soil and Water. Boca Raton: CRC Press, 85–107.
  • 7. Barce, J., Poschenrieder, C. 1990. Plant water relations as affected by heavy metal stress: A review. J. of Plant Nutrition., 13(1), 1–37. DOI: 10.1080/01904169009364057
  • 8. Bennicelli, R., Stezpniewska, Z., Banach, A., Szajnocha, K., Ostrowski, J. 2004. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere, 55, 141–146.
  • 9. Bohnert, H.J., Nelson, D.E., Jensen, R.G. 1995. Adaptation to environmental stresses. Plant Cell., 7, 1099–1111.
  • 10. Bottari, E., Festa, M.R. 1996. Asparagine as a ligand for cadmium (II), lead (II) and zinc (II). Chem. Speciation and Bioavailability, 8, 75–83.
  • 11. Buta, E., Paulette, L., Mihaiescu, T., Buta, M., Cantor, M. 2011. The influence of heavy metals on growth and development of Eichhornia crassipes species, cultivated in contaminated water. Horti Agrobot., 39(2), 135–141.
  • 12. Clemens, S., Palmgren, M.G., Krämer, U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. DOI: 10.1016/s1360-138502295-1
  • 13. Diallo, M.S., Fromer, N.A., Jhon, M.S. 2013. Nanotechnology for sustainable development: Retrospective and outlook. J. of Nanoparticle Research, 15(11), 2044. DOI: 10.1007/s11051-013-2044-0.
  • 14. Dhir B. 2010. Use of aquatic plants in removing heavy metals from wastewater. Int J Environ Eng., 2, 185–201.
  • 15. Dhir, B., Sharmila, P., Saradhi, P.P. 2008. Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. Braz. J. Plant. Physiol., 20, 61–70.
  • 16. Dhir, B., Srivastava, S. 2011. Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol. Eng., 37, 893–896.
  • 17. Dhir, B., Sharmila, P., Saradhi, P.P. 2009. Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Environ Sci Technol., 39, 754–781.
  • 18. Dhir, B., Srivastava, S. 2011. Heavy metal removal from a multi-metal solution and wastewater by Salvinia natans. Ecol Eng. 37, 893-766.
  • 19. Dummee, V., Kruatrachue, M., Trinachartvanit, W., Tanhan, P., Pokethitiyook, P., Damrongphol, P. 2012. Bioaccumulation of heavy metals in water, sediments, aquatic plant and histopathological effects on the golden apple snail in Beung Boraphet reservoir, Thailand(Article). Ecotoxicology and Environmental Safety, 86, 204–212. DOI: 10.1016/j.ecoenv.2012.09.018
  • 20. Espinoza-Quiñones, F.R. 2009. Kinetics of lead bioaccumulation from a hydroponic medium by aquatic macrophytes Pistia stratiotes. Water Air Soil Pollut. 203, 29–37.
  • 21. Espinoza-Quiñones, F.R., Módenes, A.N., Costa, I.L., Palácio, S.M., Daniela, N.S., Trigueros, E.G., Kroumov, A.D., Silva, E.A. 2009. Kinetics of lead bioaccumulation from a hydroponic medium by aquatic macrophytes Pistia stratiotes. Water Air Soil Pollut., 203, 29–37.
  • 22. Gornall, A.G., Bardawill, C.J., David, M.M. 1949. Determination of serum proteins by means of the biuret reaction. J. Biol Chem., 177(2), 751–766.
  • 23. Handy, R.D., Shaw, B.J. 2007. Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk, 9, 125–144.
  • 24. Hare, P.D., Cress, W.A., van Staden, J. 1999. Proline synthesis and degradation: a model system for elucidating stress-regulation signal transduction. J. Exp. Bot., 50, 413–434.
  • 25. Hassinen, V.H., Tuomainen, M., Peräniemi, S., Schat, H., Kärenlampi, S.O., Tervahauta, A.I. 2009. Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens. J. Exp. Bot., 60, 187–196. DOI: 10.1093/jxb/ern287
  • 26. Higuchi, K., Suzuki, K., Nakanishi, H., Yamaguchi, H., Nishizawa, N.K., Mori, S. 1999. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol. DOI: 10.1104/pp.119.2.471
  • 27. Hoffman, T., Kutter, C., Santamaria, J.M. 2004. Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Eng Life Sci., 4, 55–61. DOI: 10.1002/elsc.200400008.
  • 28. Holtra, A., Traczewska, T.M., Sitarska, M., Zamorska-Wojdyla, M. 2010. Assessment of the phytoremediation efficacy of boron-contaminated waters by Salvinia natans. Environ. Prot. Eng., 36, 87–94.
  • 29. Ingle, R.A., Smith, J.A.C., Sweetlove, L.J. 2005. Responses to nickel in the proteome of the hyperaccumulator plant Alyssum lesbiacum. Biometals, 18, 627–641. DOI: 10.1007/s10534-005-2999-0.
  • 30. Kerkeb, L., Krämer, U. 2003. The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol., 131, 716–724. DOI: 10.1104/pp102.010686
  • 31. Leblebici, Z., Aksoy, A. 2011. Growth and lead accumulation capacity of Lemna minor and Spirodela polyrhiza (Lemnaceae): interactions with nutrient enrichment. Water Air Soil Pollut., 214, 175–184.
  • 32. Liu, J., Jiang, J., Meng, Y., Aihemaiti, A., Xu, Y., Xiang, H., Gao, Y., Chen, X. 2020. Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review (Review). J. of Hazardous Materials, 388(4), 122026. DOI: 10.1016/j.jhazmat.2020.122026
  • 33. Lopatko, K.H., Aftandiliants, E.H., Kalenska, S.M., Tonkha, O.L. 2009. Mother colloidal solution of metals. Patent for invention 38459 from 12.01.2009.
  • 34. Lu, Q., He, Z.L., Graetz, D.A., Stoffella, P.J., Yang X. 2010. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ. Sci. Pollut. Res., 17, 84–96.
  • 35. Matysik, J., Alia, B., Mohanty, P. 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci., 82, 525–532.
  • 36. Mikhaylova S.V. 2004. Combination of tandem mass spectrometry and lysosomal enzymes analysis-effective tool for selective screening for IEM in neurological clinic. J. Inherit. Metab. Dis. 27(1), 39.
  • 37. Miretzky, P., Saralegui, A., Cirelli, A.F., Miretzky, P. 2006. Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere, 62, 247–254. DOI: 10.1016/j.chemosphere.2005.05.010.
  • 38. Murithi, G., Onindo, C.O., Muthakia G.K. 2012. Kinetic and equilibrium study for the sorption of Pb(II) ions from aqueous phase by water hyacinth (Eichhornia crassipes). Bull. Chem. Soc. Ethiopia. 26(2), 181–193.
  • 39. Naidu, B.P., Paleg, L.G., Aspinall, D., Jennings, A.C., Jones, G. 1991. Amino acid and glycine-betaine accumulation in cold stressed seedlings. Phytochemistry, 30, 407–409. DOI: 10.1016/0031-9422(91)83693-F
  • 40. Odjegba, V.J., Fasidi, I.O. 2006. Effects of heavy metals on some proximate composition of Eichhornia crassipes. J. Appl. Sci. Environ. Manage., 10(1), 83–87.
  • 41. Olkhovych, O., Svietlova, N., Konotop, Y., Karaushu, O., Hrechishkina, S. 2016. Removal of metal nanoparticles colloidal solutions by water plants. Nanoscale Research Letters. DOI: 10.1186/s11671-016-1742-9
  • 42. Owen, R., Handy, R.D. 2007. Formulating the problems for environmental risk assessment of nanomaterials. Environ. Sci. Techol., 41, 582–588.
  • 43. Parra, L.M., Torres, G., Arenas, A.D., Sánchez, E., Rodríguez, K. 2012. Phytoremediation of low levels of heavy metals using duckweed (Lemna minor). Abiotic stress responses in plants: metabolism, productivity and sustainability / Eds. P. Ahmad, M.N.V. Prasad. Springer, 451–463.
  • 44. Prajapati, S.K., Meravi, N., Singh, S. 2012. Phytoremediation of chromium and cobalt using Pistiastratiotes: a sustainable approach. Proc. Int. Acad. Ecol. Environ. Sci., 2(2), 136–139.
  • 45. Prasad, M., Malec, P., Waloszek, V. 2001. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci., 161, 881–889.
  • 46. Rahman, M.A., Hasegawa H. 2011. Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere, 83, 633–646.
  • 47. Roosens, N.H., Bernard, C., Leplae, R., Verbruggen, N. 2004. Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett., 577, 9–16. DOI: 10.1016/j.febslet.2004.08.084
  • 48. Taghiganji, M., Khosravi, M., Rakhshaee, R. 2012. Phytoremediation potential of aquatic macrophyte, Azolla. Ambio., 41(2), 122–137.
  • 49. Tuomainen, M., Tervahauta, A., Hassinen, V., Schat, H., Koistinen, K. M., Lehesranta, S., et al. 2010. Proteomics of Thlaspi caerulescens accessions and an inter-accession cross segregating for zinc accumulation. J. Exp. Bot., 61, 1075–1087. DOI: 10.1093/jxb/erp372
  • 50. Salt, D.E., Prince, R.C., Baker, A.J.M., Raskin, I., Pickering I.J. 1999. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Tech., 33, 713–417. DOI: 10.1021/es980825x
  • 51. Schneider, T., Persson, D.P., Husted, S., Schellenberg, M., Gehrig, P., Lee, Y., et al. 2013. A proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J and C. Presl) F.K. Meyer. Plant J., 73, 131–142. DOI: 10.1111/tpj.12022
  • 52. Shahid, M., Pourrut, B., Dumat, C. 2014. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Reviews of Environ. Contamination and Toxicology, 232, 1–44. DOI: 10.1007/978-3-319-06746-9_1
  • 53. Sharma, S.S., Dietz, K.J. 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot., 57, 711–726. DOI: 10.1093/jxb/erj073
  • 54. Smadar, E., Benny, C., Tel-Or, E., Lorena, V., Antonio, C., Aharon G. 2011. Removal of silver and lead Ions from water wastes using Azolla filiculoides, an aquatic plant, which adsorbs and reduces the ions into the corresponding metallic nanoparticles under microwave radiation in 5 min. Water Air Soil Pollut., 218, 365–370.
  • 55. Smirnoff, N., Stewart, G.R. 1987. Nitrogen assimilation and zinc toxicity to zinc-tolerant and non-tolerant clones of Deschampsia cespitosa L. Beauv. New Phytologist, 107, 671–680. DOI: 10.1111/j.1469-8137.1987.tb00905.x
  • 56. Venkatrayulu, C. 2009. Bio-adsorption of copper (II) by aquatic weed plants Hydrilla and Pistia. Asian J Animal Sci., 4, 82–85.
  • 57. Vitória A.P. 2011. Structural and eco-physiological alterations of the water hyacinth [Eichhornia crassipes ( Mart.) Solms] due to anthropo-genic stress in Brazilian Rivers. Braz Arch. Biol. Technol., 54, 1059–1068.
  • 58. Wolff, G., Pereira, G.C., Castro, E .M., Louzada, J., Coelho, F.F. 2012: The use of Salvinia auriculata as a bioindicator in aquatic ecosystems: biomass and structure dependent on the cadmium concentration. Braz. J. Biol., 72. DOI: 10.1590/S1519-69842012000100009
  • 59. Zeng, X.-W., Qiu, R.-L., Ying, R.-R., Tang, Y.-T., Tang, L., and Fang, X.-H. 2011. The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabis paniculata Franch. in response to Zn and Cd. Chemosphere, 82, 321–328. DOI: 10.1016/j.chemosphere.2010.10.030
  • 60. Zhao, L., Sun, Y.-L., Cui, S.-X., Chen, M., Yang, H.-M., Liu, H.-M., et al. 2011. Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana. Chemosphere, 85, 56–66. DOI: 10.1016/j.chemosphere.2011.06.029
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11cb76d3-7173-409f-b3b0-c77d52afa02d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.