PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influencing mechanisms of sodium hexametaphosphate on molybdenite flotation using sea water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flotation using sea water has been considered as a promising alternative to concentrate molybdenite (MoS2) under alkaline conditions due to scarcity of fresh water and increasingly strict regulations on the quality of discharged water. However, the MoS2 recovery with sea water during flotation has not been satisfactory, owing to the depressing effects from the hydrophilic metallic species onto MoS2 surface. This study combines experimental and theoretical studies of MoS2 flotation to investigate how the physicochemical properties of MoS2 vary with the addition of a dispersant, sodium hexametaphosphate (SHMP), and in sea and fresh water. Our experimental results show that the addition of SHMP during flotation has increased the recovery of MoS2, via reducing the adsorption of the hydrophilic metallic precipitation onto MoS2 surface. The DLVO calculation confirms that the addition of SHMP increases the floatability of MoS2 by dispersing the formed hydrophilic metallic precipitation (Mg(OH)2 colloids) from the MoS2 surface, via reversing attraction force to repulsion force, thereby improving MoS2 flotation recovery.
Rocznik
Strony
1091--1098
Opis fizyczny
Bibliogr. 23 poz., tab., wykr., wz.
Twórcy
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
  • Hubei Key Laboratory of Mineral Resources Processing & Environment, Wuhan 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
autor
  • CSIRO Mineral Resources, Private Bag 10, Clayton South, VIC, 3169, Australia
Bibliografia
  • ARIAS, DAYANA., CISTERNAS, LUIS A. and RIVAS, MARIELLA., 2017. Biomineralization of calcium and magnesium crystals from seawater by halotolerant bacteria isolated from Atacama Salar (Chile). Desalination. 405, 1- 9.
  • CASTRO, S., LOPEZ-VALDIVIESO, A. and LASKOWSKI, J. S., 2016. Review of the flotation of molybdenite. Part I: Surface properties and floatability. International Journal of Mineral Processing. 148, 48-58.
  • JELDRES, RICARDO I., ARANCIBIA-BRAVO, MAR A P., REYES, ARTURO., AGUIRRE, CLAUDIA E., CORTES, LORENA. and CISTERNAS, LUIS A., 2017. The impact of seawater with calcium and magnesium removal for the flotation of copper-molybdenum sulphide ores. Minerals Engineering. 109, 10-13.
  • JELDRES, RICARDO I., FORBES, LIZA. and CISTERNAS, LUIS A., 2016. Effect of seawater on sulfide ore flotation: a review. Mineral Processing & Extractive Metallurgy Review. 37, 369-384.
  • LAZGHAB, MARIEM., SALEH, KHASHAYAR., PEZRON, ISABELLE., GUIGON, PIERRE. and KOMUNJER, LJEPSA., 2005. Wettability assessment of finely divided solids. Powder Technology. 157, 79-91.
  • LI, W., LI, Y., XIAO, Q., WEI, Z. and SONG, S., 2018. The Influencing Mechanisms of Sodium Hexametaphosphate on Chalcopyrite Flotation in the Presence of MgCl2 and CaCl2. Minerals. 8, 150-168.
  • LI, W. and LI, Y., 2019. Improved understanding of chalcopyrite flotation in seawater using sodium hexametaphosphate. Minerals Engineering. 134, 269-274.
  • LI, W., LI, Y., WEI, Z., XIAO, Q. and SONG, S., 2018. Fundamental Studies of SHMP in Reducing Negative Effects of Divalent Ions on Molybdenite Flotation. Minerals. 8, 404-421.
  • LI, Y., CLEMENT, L., SONG, S., LI, Y. and GERSON, A. R., 2018. The fundamental roles of monovalent and divalent cations with sulfates on molybdenite flotation in the absence of flotation reagents. RSC ADVANCES. 8, 23364-23371.
  • LI, Y., LI, W., WEI, Z., XIAO, Q., CLEMENT, L., LI, Y. and SONG, S., 2018. The Influence of Common Chlorides on the Adsorption of SBX on Chalcopyrite Surface during Flotation Process. Mineral Processing and Extractive Metallurgy Review. 1-12.
  • LI, Z., HAN, Y., LI, Y. and GAO, P., 2017. Effect of serpentine and sodium hexametaphosphate on ascharite flotation. Transactions of Nonferrous Metals Society of China. 27, 1841-1848.
  • LIU, G., LU Y., ZHONG, H., CAO, Z. and XU, Z., 2012. A novel approach for preferential flotation recovery of molybdenite from a porphyry copper-molybdenum ore. Minerals Engineering. 36-38, 37-44.
  • LU, J., SUN, M., YUAN, Z., QI, S., TONG, Z., LI, L. and MENG, Q., 2019. Innovative insight for sodium hexametaphosphate interaction with serpentine. Colloids Surf Physicochem Eng Aspects. 560, 35-41.
  • LUIS, A, CISTERNAS., G LVEZ., EDELMIRA, A. and LOPEZ-VALDIVIESO., 2015. Study of the natural floatability of molybdenite fines in saline solutions and effect of gypsum precipitation. Minerals and Metallurgical Processing. 32, 203-208.
  • QIU, Z., LIU, G., LIU, Q. and ZHONG, H., 2016. Understanding the roles of high salinity in inhibiting the molybdenite flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 509, 123-129.
  • RAMOS, O., CASTRO, S. and LASKOWSKI, J. S., 2013. Copper–molybdenum ores flotation in sea water: Floatability and frothability. Minerals Engineering. 53, 108-112.
  • RAO, F., L ZARO, I. and IBARRA, L. A., 2016. Solution chemistry of sulphide mineral flotation in recycled water and sea water: a review. Mineral Processing and Extractive Metallurgy. 126, 139-145.
  • REBOLLEDO, ERICK., LASKOWSKI, JANUSZ S., GUTIERREZ, LEOPOLDO. and CASTRO, SERGIO., 2017. Use of dispersants in flotation of molybdenite in seawater. Minerals Engineering. 100, 71-74.
  • SUYANTARA, GDE PANDHE WISNU., HIRAJIMA, TSUYOSHI., MIKI, HAJIME. and SASAKI, KEIKO., 2018. Floatability of molybdenite and chalcopyrite in artificial seawater. Minerals Engineering. 115, 117-130.
  • WANG, B., PENG, Y., 2014. The effect of saline water on mineral flotation – a critical review. Minerals Engineering. 66–68, 13-24.
  • LI, Y., LI, W., XIAO, Q., HE, N., REN, Z., CLEMENT, L. and GERSON, A. R., 2017. The Influence of Common Monovalent and Divalent Chlorides on Chalcopyrite Flotation. Minerals. 7, 111-121.
  • XIA, W., 2017. Role of surface roughness in the attachment time between air bubble and flat ultra-low-ash coal surface. International Journal of Mineral Processing. 168, 19-24.
  • YU, Y., MA, L., XU, H., SUN, X., ZHANG, Z. and YE, G., 2018. DLVO theoretical analyses between montmorillonite and fine coal under different pH and divalent cations. Powder Technology. 330, 147-151.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11c74e17-7e85-480f-a940-36f5476cbaa3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.