PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic Investigation of Propagating Behavior in SHS for Equiatomic and Non-Equiatomic NiTi Alloys Using Factsage Software

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the current work, the thermodynamic properties of equiatomic and non-equiatomic Ni-Ti were estimated using Factsage Software for the “self-propagating high temperature synthesis (SHS) method. To calculate behind the pure substance model, the sublattice model was used. For the various ratios of the nickel in the B2 ordered phase and second intermetallics, the values of adiabatic temperature, Cp, Gibbs free energy, enthalpy of formation, products, and liquid-solid ratio were computed (Ni3Ti, Ti2Ni). These proporties play a crucial role in understanding the nature of propagating behavior since they affect the final product’s micro/macrostructure, mechanical characteristics, and stable or metastable phases. The results were compared with the literature. It was also discussed why the existing studies could not reach the theoretical adiabatic temperature and the effect of the ignition W wire on the sample was investigated with the experimental study.
Słowa kluczowe
Twórcy
autor
  • Istanbul Medipol University, Vocational School, Construction Technology Department, Istanbul, Turkey
autor
  • Istanbul Technical University, Metallurgical and Materials Engineering Department, Istanbul, Turkey
Bibliografia
  • [1] M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Manufacturing and processing of NiTi implants: A review. Progress in Materials Science 57, 911-946 (2012). DOI: https://doi.org/10.1016/j.pmatsci.2011.11.001
  • [2] H. Jiang, L. Rong, Ways to lower transformation temperatures of porous NiTi shape memory alloy fabricated by self-propagating high-temperature synthesis. Materials Science Engineering 438, 883-886 (2006). DOI: https://doi.org/10.1016/j.msea.2006.01.103
  • [3] B. Yuan, X. Zhang, C.Y. Chung, M. Zhu, The effect of porosity on phase transformation behavior of porous Ti-50.8 at.% Ni shape memory alloys prepared by capsule-free hot isostatic pressing. Materials Science Engineering: A 438, 585-588 (2006). DOI: https://doi.org/10.1016/j.msea.2006.02.141
  • [4] Z.A. Munir, U. Anselmi-Tamburini, Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Materials Science Reports 3 (7-8), 277-365 (1989). DOI: https://doi.org/10.1016/0920-2307(89)90001-7
  • [5] B. Li, Rong, L.J., Y.-Y. Li, V. Gjunter, Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis: Reaction mechanism and anisotropy in pore structure. Acta Materialia 48 (15), 3895-3904 (2000). DOI: https://doi.org/10.1016/s1359-6454(00)00184-1
  • [6] C.L. Yeh, W.Y. Sung, Synthesis of NiTi intermetallics by self-propagating combustion. Journal of Alloys and Compounds 376 (1-2), 79-88 (2004). DOI: https://doi.org/10.1016/j.jallcom.2003.12.016
  • [7] B.Y. Tay, C.W. Goh, Y.W. Gu, C.S. Lim, M.S. Yong, M.K. Ho, M.H. Myint, Porous NiTi fabricated by self-propagating high-temperature synthesis of elemental powders. Journal of Materials Processing Technology 202 (1-3), 359-364 (2008). DOI: https://doi.org/10.1016/j.jmatprotec.2007.09.037
  • [8] J.J. Moore, H.C. Yi, Combustion Synthesis and Its Application in Producing Intermetallic Shape Memory Alloys. Materials Science Forum 56-58, 637-642 (1990). DOI: https://doi.org/10.4028/www.scientific.net/MSF.56-58.637
  • [9] L. Zhang, Z. Wang, Thermal investigation of fabricating porous NiTi SMA by SHS. Experimental Thermal and Fluid Science 32 (6), 1255-1263 (2008). DOI: https://doi.org/10.1016/j.expthermflusci.2008.02.006
  • [10] C. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J.J.C. Melançon, Reprint of: FactSage thermochemical software and databases 2010-2016. 55, 1-19 (2016).
  • [11] P. Bellen, K.H. Kumar, P. Wollants, Thermodynamic assessment of the Ni-Ti phase diagram. International Journal of Materials Research 87 (12), 972-978 (1996). DOI: https://doi.org/10.1515/ijmr-1996-871207
  • [12] N. Saunders, A. P. Miodownik (ed.), CALPHAD (calculation of phase diagrams): a comprehensive guide, 1998 Elsevier.
  • [13] E. Povoden-Karadeniz, D. Cirstea, P. Lang, T. Wojcik, E. Kozeschnik, Thermodynamics of Ti-Ni shape memory alloys. Calphad 41, 128-139 (2013). DOI: https://doi.org/10.1016/j.calphad.2013.02.004
  • [14] W. Tang, B. Sundman, R. Sandström, C. Qiu, New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system. Acta Materialia 47 (12), 3457-3468 (1999). DOI: https://doi.org/10.1016/s1359-6454(99)00193-7
  • [15] I. Barin, G. Platzki, Thermochemical data of pure substances, 1989 Wiley Online Library, Weinheim.
  • [16] O. Çoban, M. Buğdaycı, M.E. Açma, Production of B4C-TiB2 composite powder by self-propagating high-temperature synthesis. Journal of the Australian Ceramic Society 58, 777-791 (2022). DOI: https://doi.org/10.1007/s41779-022-00714-5
  • [17] O. Çoban, M. Buğdaycı, S. Başlayıcı, M.E. Açma, Combustion synthesis of B4C TiB2 Nanocomposite powder effect of Mg particle size on SHS and optimization of Acid Leaching Process. Journal of Superhard Materials 45, 20-40 (2023). DOI: https://doi.org/10.3103/s1063457623010033
  • [18] P. Mossino, Some aspects in self-propagating high-temperature synthesis. Ceramics International 30, 311-332 (2004). DOI: https://doi.org/10.1016/s0272-8842(03)00119-6
  • [19] Ö.C. Odabaş, M. Buğdaycı, S. Kan, A. Turan, O. Yücel, Effects of reductant type on the combustion synthesis of NiB. Solid State Sciences 111, 1-8 (2021). DOI: https://dx.doi.org/10.1016/j.solidstatesciences.2020.106447
  • [20] M. Buğdaycı, G. Deniz, C. Ziyreker, A. Turan, L. Öncel, Thermodynamic modeling and production of FeCo alloy from mill scale through metallothermic reduction. Engineering Science and Technology, An International Journal 23, 1259-1265 (2020). DOI: https://doi.org/10.1016/j.jestch.2020.03.003
  • [21] S. Wisutmethangoon, N. Denmud, L. Sikong, Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique. Materials Science and Engineering: A 515 (1-2), 93-97 (2009). DOI: https://doi.org/10.1016/j.msea.2009.02.055
  • [22] C.L. Chu, C.Y. Chung, P.H. Lin, S.D. Wang, Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis. Materials Science and Engineering: A 366 (1), 114-119 (2004). DOI: https://doi.org/10.1016/j.msea.2003.08.118
  • [23] C.-L. Chu, B. Li, S.-D. Wang, S. Zhang, X. Yang, Z. Yin, Preparation of TiNi shape memory alloy porosint by SHS. Transactions of the Nonferrous Metals Society of China 7 (4), 84-87 (1997).
  • [24] A. Biswas, Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure. Acta Materialia 53 (5), 1415-1425 (2005). DOI: https://doi.org/10.1016/j.actamat.2004.11.036
  • [25] Y.-H. Li, L.-J. Rong, Y.-Y. Li, Pore characteristics of porous NiTi alloy fabricated by combustion synthesis. Journal of Alloys and Compounds 25 (1), 259-262 (2001). DOI: https://doi.org/10.1016/s0925-8388(01)01382-2
  • [26] P. Novák, L. Mejzlíková, A. Michalcová, J. Čapek, P. Beran, D. Vojtěch, Effect of SHS conditions on microstructure of NiTi shape memory alloy. Intermetallics 42, 85-91 (2013). DOI: https://doi.org/10.1016/j.intermet.2013.05.015
  • [27] G. Tosun, L. Ozler, M. Kaya, N. Orhan, A study on microstructure and porosity of NiTi alloy implants produced by SHS. Journal of Alloys and Compounds 487, 605-611 (2009). DOI: https://doi.org/10.1016/j.jallcom.2009.08.023
Uwagi
The authors are pleased to acknowledge the financial support from The Scientific and Technological Research of Turkey (TUBITAK, Project No: 213M556)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11bee0e6-7520-4460-962d-9a5483742c82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.