PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trusses of the smallest total potential energy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the problem of minimization of the total potential energy of trusses subjected to static loads in the presence of prescribed displacements of selected supporting nodes. The positions of the internal (free) nodes are fixed and the supporting nodes are imposed, the member stiffnesses being design variables, while the truss volume represents the cost of the design. Due to the assumption of the stiffnesses being non-negative, the problem is reduced to a problem of optimization of structural topology. Upon eliminating all the design variables analytically the optimum design problem is eventually reduced to the two mutually dual problems expressed either in terms of member forces or in terms of displacements of free nodes. The problem setting concerning the case when the prescribed displacements of supports are the only loads applied (i.e. kinematic loads) assumes a particularly simple form. A specific numerical method of solving the stress-based auxiliary problem has been developed for the selected 2D and 3D optimal designs. The study is the first step towards topology optimization of trusses with distortions.
Rocznik
Strony
art. no. e151673
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics and Computer Aided Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics and Computer Aided Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Bibliografia
  • [1] T. Mura, Micromechanics of Defects in Solids, The Hague: Martinus Nijhoff Publishers, 1982.
  • [2] A.A. Novotny and J. Sokołowski, An introduction to the topological derivative method, Springer, 2020.
  • [3] T. Lewiński and J. Sokołowski, “Energy change due to the appearance of cavities in elastic Solids”, Int. J. Solids Struct., vol. 40, pp. 1765–1803, 2003.
  • [4] G. Leugering and J. Sokołowski, “Topological derivatives for elliptic problems on graphs”, Control Cybern., vol. 37, pp. 971–998, 2008.
  • [5] J. Holnicki-Szulc, Virtual distortion method, Springer-Verlag, Berlin, 1991.
  • [6] J. Bessini, C. Lazaro, J. Casanova Colón, and S. Monleón Cremades, “Efficiency-based design of bending-active tied arches,” Eng. Struct., vol. 200, pp. 1–11, 2019.
  • [7] Ph. Ciarlet, Mathematical Elasticity, North-Holland, Amsterdam 1988.
  • [8] G. Duvaut and J.-L. Lions, Les Inequations en Mécanique et en Physique, Paris: Dunod 1972.
  • [9] J. Nečas and J. Hlavaček, Mathematical Theory of Elasto- and Elasto-Plastic Bodies: An Introduction, Amsterdam: Elsevier 1981.
  • [10] S. Czarnecki, “Isotropic material design,” Comput. Methods Sci. Tech. vol. 21, no. 2, pp. 49–64, 2015.
  • [11] L.J. Walpole, “Fourth-rank tensors of the thirty-two crystal classes: multiplication tables,” Proc. R. Soc. Lond. A, vol. 391, pp. 149–179, 1984.
  • [12] T. Lewiński, “Optimum design of elastic moduli for the multiple load problems,” Arch. Mech., vol. 73, no. 1, pp. 27–66, 2021, doi: 10.24423/aom.3607.
  • [13] K. Bołbotowski and T. Lewiński, “Setting the Free Material Design problem through the methods of optimal mass distribution,” Calc. Var., vol. 61, p. 76, 2022, doi: 10.1007/s00526-022-02186-8.
  • [14] C. Barbarosie and S. Lopes, “A generalized notion of compliance,” Comptes Rendus Mécanique, vol. 339, pp. 641–648, 2011, doi: 10.1016/j.crme.2011.07.002.
  • [15] F. Niu, S. Xu, and G. Cheng, “A general formulation of structural topology optimization for maximizing structural stiffness,” Struct. Multidiscip. Optim., vol. 43, pp. 561–572, 2011.
  • [16] A. Klarbring and N. Strömberg, “A note on the min-max formulation of stiffness optimization including non-zero prescribed displacements,” Struct. Multidiscip. Optim., vol. 45, pp. 147–149, 2012.
  • [17] A. Klarbring, “Design optimization based on state problem functionals,” Struct. Multidiscip. Optim., vol. 52, pp. 417–425, 2015.
  • [18] W.S. Hemp, Optimum structures, Oxford: Clarendon Press, 1973.
  • [19] T. Lewiński, T. Sokół, and C. Graczykowski, Michell Structures, Springer, Cham, 2019.
  • [20] R.T. Rockafellar, Convex Analysis, Princeton, New Jersey: Princeton University Press, 1970.
  • [21] M.P. Bendsøe, A. Ben-Tal, and J. Zowe, “Optimization methods for truss geometry and topology design,” Struct. Optim., vol. 7, pp. 141–159, 1994.
  • [22] W. Achtziger, “Topology optimization of discrete structures: an introduction in view of computational and nonsmooth aspects,” in: Topology Optimization in Structural Mechanics, CISM Courses and Lectures 374, G.I.N. Rozvany, Ed., New York: Springer, 1997, pp. 57–100.
  • [23] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C. The Art of Scientific Computing, Cambridge: Cambridge University Press, 1992.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11b79bcb-899d-45e3-baea-1ed5aba9672a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.