PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Sentinel-2 to monitor highly dynamic small water bodies: The case of Louro lagoon (Galicia, NW Spain)

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Coastal lagoons have been providing ecological, economic and cultural benefits for many centuries. Despite their importance, the monitoring of coastal lagoons poses numerous challenges related to their complex environmental processes, their large variability in size and their remote location, inhibiting effective management programmes. This study demonstrates the effectiveness of Sentinel-2 satellites to map highly dynamic morphological and hydrological changes in the Louro lagoon, a small choked lagoon located on the Galician coast (NW Spain). For this purpose, a simple methodology using the Normalised Difference Water Index (NDWI) has been evaluated, which allows to monitor the sand barrier changes and the inlet formation. The results show that the sand barrier's opening and closing might take only a very short period, and the recovery of the lagoon to its full water level can happen in less than a month. Sentinel-2 images also reveal drastic changes in the water level once the sand barrier is broken. A water surface area of 0.24 km2 was estimated on 04/11/2019, while this surface was reduced to 0.10 km2 on 04/12/2019. Monitoring these changes is critical to understand the different processes ongoing in these valuable environments and making informed decisions for their management and protection.
Czasopismo
Rocznik
Strony
88--102
Opis fizyczny
Bibliogr. 83 poz., fot, rys, tab., wykr.
Twórcy
autor
  • National Centre for Geocomputation, Maynooth University, Maynooth, Co. Kildare, Ireland
Bibliografia
  • 1. Acharya, T.D., Subedi, A., Lee, D.H., 2018. Evaluation of water indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 18, 2580. https://doi.org/10.3390/s18082580
  • 2. Amécija, C, Villacieros-Robineau, N, Alejo, I, Pérez-Arlucea, M, et al., 2009. Morphodynamic conceptual model of an exposed beach: the case of Louro Beach (Galicia, NW Iberia). J. Coast Res. SI56 1711-1715.
  • 3. Ansper, A., Alikas, K., 2019. Retrieval of chlorophyll a from Sentinel-2 MSI data for the European Union Water Framework Directive Reporting Purposes. Remote Sens 11 (1), 64. https://doi.org/10.3390/rs11010064
  • 4. Bao, R., Alonso, A., Delgado, C., Pagés, J.L., 2007. Identification of the main driving mechanisms in the evolution of a small coastal wetland (Traba, Galicia, NW Spain) since its origin 5700 calyr BP. Palaeogeogr. Palaeoclimatol. Palaeoecol. 247, 296-312. https://doi.org/10.1016/j.palaeo.2006.10.019
  • 5. Barnes, R.S.K., 1980. Coastal Lagoons. Cambridge University Press, Cambridge, 106 pp.
  • 6. Bertotti-Crippa, L., Stenert, C., Maltchik, L., 2013. Does the management of sandbar openings influence the macroinvertebrate communities in southern Brazil wetlands? A case study at Lagoa do Peixe National Park Ramsar site. Ocean Coastal Manage. 71, 26-32. https://doi.org/10.1016/j.ocecoaman.2012.10.009
  • 7. Bird, E.C.F., 1994. Physical setting and geomorphology of coastal lagoons. In: Kjerfve, B. (Ed.), Coastal Lagoon Processes. Elsevier, Amsterdam, 9e39.
  • 8. Boschetti, M., Nutini, F., Manfron, G., Brivio, P.A., Nelson, A., 2014. Comparative analysis of Normalised Difference Spectral Indices derived from MODIS for detecting surface water in flooded rice cropping systems. PLoS ONE 9 (2), e88741. https://doi.org/10.1371/journal.pone.0088741
  • 9. Braga, F., Scarpa, G.M., Branco, V., Manfé, G., Zaggia, L., 2020. COVID-19 lockdown measures reveal human impact on water quality transparency in the Venice Lagoon. Sci. Total Environ. 736, 139612. https://doi.org/10.1016/j.scitotenv.2020.139612
  • 10. Brisset, M., Van Wynsberge, S., Andréfouët, S., Payri, C., Soulard, B., Bourassin, E., Gendre, R.L., Coutures, E., 2021. Hindcast and Near Real-Time Monitoring of Green Macroalgae Blooms in Shallow Coral Reef Lagoons Using Sentinel-2: A New-Caledonia Case Study. Remote Sens. 13, 211. https://doi.org/10.3390/rs13020211
  • 11. Bryant, R.G., Rainey, M.P., 2002. Investigation of flood inundation on playas within the Zone of Chotts, using a time-series of AVHRR. Remote Sens. Environ. 82, 360-375. https://doi.org/10.1016/S0034-4257(02)00053-6
  • 12. Casal, G., Hedley, J.D., Monteys, X., Harris, P., Cahalane, C., Mc-Carthy, T., 2020. Satellite-derived bathymetry in optically complex waters using a model inversion approach and Sentinel-2 data. Estuar. Coast. Shelf Sci. 241, 106814. https://doi.org/10.1016/j.ecss.2020.106814
  • 13. Casal, G., Sánchez-Carnero, N., Sánchez-Rodríguez, E., Freire, J., 2011. Remote sensing with SPOT-4 for mapping kelp forest in turbid waters on the south European Atlantic shelf. Estuar. Coast. Shelf Sci. 91 (3), 371-378. https://doi.org/10.1016/j.ecss.2010.10.024
  • 14. Conde, D., Vitancurt, J., Rodríguez-Gallego, L., de Álava, D., Verrastro, N., Chreties, C., Solari, S., Teixeira, L., Lagos, X., Piñeiro, G., Seijo, L., Caymaris, H., Panario, D., 2015. Solutions for Sustainable Coastal Lagoon Management: From Conflict to the Implementation of a Consensual Decision Tree for Artificial Opening. In: Baztan, J., Chouinard, O., Jorgensen, B., Tett, P., Vanderlinden, J.P., Vasseur, L. (Eds.), Coastal Zones. Solutions for the 21st Century. Elsevier, Amsterdam, The Netherlands, 217-250.
  • 15. Costas, S., Muñoz-Sobrino, C., Alejo, I., Pérez-Arlucea, M., 2009. Holocene evolution of a rock-bounded barrier-lagoon system. Cíes Islands, northwest Iberia, Earth Surf. Proc. Land 34, 1575-1586. https://doi.org/10.1002/esp.1849
  • 16. Danaher, T., Collett, L., 2006. Development, optimisation and multi-temporal application of a simple Landsat based water index. Paper presented at 13th Australasian Remote Sensing and Photogrammetry Conference, Canberra, Australia, 21-22 November 2006.
  • 17. Davies, J.L., 1964. A morphogenetic approach to world shorelines. Zeitschrift fur Geomorphology 8, 127-142.
  • 18. DeVries, B., Huang, C., Armston, J., Huang, W., Jones, J.W., Lang, M.W., 2020. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 240, 111664. https://doi.org/10.1016/j.rse.2020.111664
  • 19. Donchyts, G., Schellekens, J., Winsemius, H., Eisemann, E., van de Giesen, N., 2016. A 30 m resolution surface water mask including estimation of positional and thematic differences using Landsat 8, SRTM and OpenStreetMap: A case study in the Murray-Darling Basin, Australia. Remote Sens. 8 (5), 386. https://doi.org/10.3390/rs8050386
  • 20. Du, Y., Teillet, P.M., Cihlar, J., 2002. Radiometric normalisation of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sens. Environ. 82(1), 123-134. https://doi.org/10.1016/S0034-4257(02)00029-9
  • 21. Du, Y., Zhan, Y., Ling, F., Wang, Q., Li, W., Li, X., 2016. Water bodies’mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 8 (4), 354. https://doi.org/10.3390/rs8040354
  • 22. Du, Z., Linghu, B., Ling, F., Li, W., Tian, W., Wang, H., Gui, Y., Sun, B., Zhang, X., 2012. Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin. China. J. Appl. Remote Sens. 6, 063609. https://doi.org/10.1117/1.JRS.6.063609
  • 23. Duan, Z., Bastiaanssen, W.G.M., 2013. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sens. Environ. 134, 403-416. https://doi.org/10.1016/j.rse.2013.03.010
  • 24. Duck, R.W., Figueiredo da Silva, J., 2012. Coastal lagoons and their evolution: A hydromorphological perspective. Estuar. Coast. Shelf. 110, 2-14. https://doi.org/10.1016/j.ecss.2012.03.007
  • 25. EC, 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal L 206, 7-50. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31992L0043:EN:HTML
  • 26. EC, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal L 327, 0001-0073, 22/12/2000 P. https://eur-lex.europa.eu/eli/dir/2000/60/oj
  • 27. Feyisa, G.L., Meilby, H., Fensholt, R, Proud, S.R., 2014. Automated water extraction index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 140, 23-35. https://doi.org/10.1016/j.rse.2013.08.029
  • 28. Fisher, A., Flood, N., Danaher, T., 2016. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 175, 167-182. https://doi.org/10.1016/j.rse.2015.12.055
  • 29. Fortunato, A.B., Nahon, A., Dodet, G., Pires, A.R., Freitas, M.C., Bruneau, N., Azevedo, A., Bertin, X., Benevides, P., Andrade, C., Oliveira, A., 2014. Morphological evolution of an ephemeral tidal inlet from opening to closure: the Albufeira inlet, Portugal. Cont. Shelf Res. 73 (1), 49-63. https://doi.org/10.1016/j.csr.2013.11.005
  • 30. Fraga-Santiago, P., Gómez-Pazo, A., Pérez-Alberti, A., Montero, P., Otero-Pérez, A., 2019. Trends in the recent evolution of coastal lagoons and lakes in Galicia (NW Iberian Peninsula). J. Mar. Sci. Eng. 7, 272. https://doi.org/10.3390/jmse7080272
  • 31. Frazier, P.S., Page, K.J., 2000. Water body detection and delineation with Landsat TM data. Photogramm. Eng. Remote Sens. 66 (12), 1461-1467.
  • 32. Gale, E., Pattiaratchi, C., Ranasinghe, R., 2006. Vertical mixing processes in intermittently closed and open lakes and lagoons, and the dissolved oxygen response. Estuar. Coast. Shelf Sci. 69 (1-2), 205-216. https://doi.org/10.1016/j.ecss.2006.04.013
  • 33. Gholizadeh, M.H., Melesse, A.M., Reddi, L., 2016. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 16 (8), 1298. https://doi.org/10.3390/s16081298
  • 34. González-Villanueva, R., Costas, S., Pérez-Arlucea, M., Jerez, S., Trigo, R.M., 2013. Impact of atmospheric circulation patterns on coastal dune dynamics, NW Spain. Geomorphology 185, 96-109. https://doi.org/10.1016/j.geomorph.2012.12.019
  • 35. González-Villanueva, R., Pérez-Arlucea, M., Costas, S., 2017. Lagoon water-level oscillations driven by rainfall and wave climate. Coast. Eng. 130, 34-45. https://doi.org/10.1016/j.coastaleng.2017.09.013
  • 36. González-Villanueva, R., Pérez-Arlucea, M., Costas, S., Bao, R., Otero, X.L., Goble, R., 2015. 8000 years of environmental evolution of barrier—lagoon systems emplaced in coastal embayments (NW Iberia). The Holocene 25 (11), 1786-1801. https://doi.org/10.1177/0959683615591351
  • 37. Green, A., Cooper, J.A.G., LeVieux, A., 2013. Unusual barrier/inlet behaviour associated with active coastal progradation and river-dominated estuaries. J. Coast. Res. 35-45. https://doi.org/10.2112/SI_69_4
  • 38. Guo, Y.L., Li, Y.M., Zhu, L., Liu, G, Wang, S, Du, C.G., 2015. An Improved Unmixing-Based Fusion Method: Potential application to remote monitoring of inland waters. Remote Sens. 7, 1640-1666. https://doi.org/10.3390/rs70201640
  • 39. Hedley, J.D., Roelfsema, C., Brando, V., Giardino, C., Kutser, T., Phinn, S., Mumby, P.J., Barrilero, O., Laporte, J., Koetz, B., 2018. Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sens. Environ. 216, 598-614. https://doi.org/10.1016/j.rse.2018.074
  • 40. Ji, L., Zhang, L., Wylie, B., 2009. Analysis of dynamic thresholds for the normalised difference water index. Photogramm. Eng. Remote Sens. 75 (11), 1307. https://doi.org/10.14358/PERS.75.11.1307
  • 41. Kaplan, G., Avdan, U., 2017. Object-based water body extraction model using Sentinel-2 satellite imagery. Int. J. Remote Sens. 50 (1), 1297540. https://doi.org/10.1080/22797254.2017.1297540
  • 42. Karim, M., Maanan, M., Maanan, M., Rhinane, H., Rueff, H., Baidder, L., 2019. Assessment of water body change and sedimentation rate in Moulay Bousselham wetland, Morocco, using geospatial technologies. Int. J. Sediment Res. 34, 65-72. https://doi.org/10.1016/j.ijsrc.2018.08.007
  • 43. Kjerfve, B., 1994. In: Kjerfve, B. (Ed.). Coastal Lagoon Processes, Amsterdam, 1-8.
  • 44. Ko, B., Kim, H., Nam, J., 2015. Classification of potential water bodies using Landsat 8 OLI and a combination of two boosted Random Forest classifiers. Sensors 15 (6), 13763. https://doi.org/10.3390/s150613763
  • 45. Lavery, P., Pattiaratchi, C., Wyllie, A., Hick, P., 1993. Water quality monitoring in estuarine waters using the Landsat thematic mapper. Remote Sens. Environ. 46 (3), 268-280. https://doi.org/10.1016/0034-4257(93)90047-2
  • 46. Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., Sun, B., Zhang, X.A., 2013. A comparison of land surface water mapping using the normalised difference water index from TM, ETM+ and ALI. Remote Sens. 5 (11), 5530-5549. https://doi.org/10.3390/rs5115530
  • 47. Liu, X., Deng, R., Xu, J., Zhang, F., 2017. Coupling the modified linear spectral mixture analysis and pixel-swapping methods for improving subpixel water mapping: application to the Pearl River Delta, China. Water 9 (9), 658. https://doi.org/10.3390/w9090658
  • 48. Luis, K.M.A., Rheuban, J.E., Kavanaugh, M.T., Glover, D.M., Wei, J., Lee, Z., Doney, S.C., 2019. Capturing coastal water clarity variability with Landsat 8. Mar. Pollut. Bull. 145, 96-104.
  • 49. McFeeters, S.K., 1996. The use of the Normalised Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425-1432. https://doi.org/10.1080/01431160600589179
  • 50. Meng, W., Zhu, S., Cao, W., Su, X., Cao, B., 2013. Establishment of synthetical water index. Science of Surveying and Mapping 38 (4), 130-133.
  • 51. Moreno, I.M., Avila, A., Losada, M.A., 2010. Morphodynamics of intermittent coastal lagoons in southern Spain: Zahara de losatunes. Geomorphology 121 (3-4), 305-316. https://doi.org/10.1016/j.geomorph.2010.04.028
  • 52. Newton, A., Brito, A.C., Icely, J.D., Derolez, V., Clara, I., Angus, S., Schernewski, G., Inácio, M., Lillebø, A.I., Sousa, A.I.,Béjaoui, B., Solidoro, C., Tosic, M., Cañedo-Argüelles, M., Ya-mamuro, M., Reizopoulou, S., Tseng, H.C., Canu, D., Roselli, L.,Maanan, M., Cristina, S., Ruiz-Fernández, A.C., Lima, R.F.D., Kjerfve, B., Rubio-Cisneros, N., Pérez-Ruzafa, A., Marcos, C., Pastres, R., Pranovi, F., Snoussi, M., Turpie, J., Tuchkovenko, Y., Dyack, B., Brookes, J., Povilanskas, J.R., Khokhlov, V., 2018. Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 44, 50-65. https://doi.org/10.1016/j.jnc.2018.02.009
  • 53. Özelkan, E., 2020. Water body detection analysis using NDWI indices derived from Landsat-8 OLI. Pol. J. Environ. Stud. 29 (2), 1759-1769. https://doi.org/10.15244/pjoes/110447
  • 54. Pérez-Arlucea, M., Almecija, C., González-Villanueva, R., Alejo, I., 2011. Water dynamics in a barrier-lagoon system: controlling factors. J. Coast. Res. SI 64, 15-19.
  • 55. Rokni, K., Ahmad, A., Selamat, A., Hazini, S., 2014. Water feature extraction and change detection using multitemporal Landsat Imagery. Remote Sens. 6, 4173-4189. https://doi.org/10.3390/rs6054173
  • 56. Rouse, J.W., Haas, R.H, Schell, J.A., Deering, D.W., 1973. Monitoring vegetation systems in the Great Plains with ERTS (Earth Resources Technology Satellite). In: Proceedings of the Third Earth Resources Technology Satellite Symposium, Greenbelt, ON, Canada, 10-14 December, 309-317.
  • 57. Salameh, E., Frappart, F., Turki, I., Laignen, B., 2020. Intertidal topography using the waterline method from Sentinel 1 and Sentinel-2 images: the examples of Arcachon and Veys Bays in France. ISPRS J. Photogramm. Remote Sens. 163, 98-120. https://doi.org/10.1016/j.isprsjprs.2020.03.003
  • 58. Sebastiá-Frasquet, M.T., Aguilar-Maldonado, J.A., Santamaría-del-Ángel, E., Estornell, J., 2019. Sentinel 2 analysis of turbidity patterns in a coastal lagoon. Remote Sens. 11 (24), 2926. https://doi.org/10.3390/rs11242926
  • 59. Sekertekin, A., 2019. Potential of global thresholding methods for the identification of surface water resources using Sentinel-2 satellite imagery and normalised difference water index. J. Appl. Remote Sens. 13 (4), 44507. https://doi.org/10.1117/1.JRS.13.044507
  • 60. Smakhtin, V. , 2004. Simulating the hydrology and mouth conditions of small, temporarily closed/open estuaries. Wet-lands 24, 123-132. https://doi.org/10.1672/0277-5212(2004)024[0123:STHAMC]2.0.CO;2
  • 61. Sòria-Perpinyà, X., Vicente, E., Urrego, P., Pereira-Sandoval, M., Ruíz-Verdú, A., Delegido, J., Soria, J.M., Moreno, J., 2020. Remote sensing of cyanobacterial blooms in a hyper-trophic lagoon (Albufera of Valencia, Eastern Iberian Peninsula) using multitemporal Sentinel-2 images. Sci. Total Environ. 698, 123305. https://doi.org/10.1016/j.scitotenv.2019.134305
  • 62. Özelkan, E., 2020. Water body detection analysis using NDWI indices derived from Landsat-8 OLI. Pol. J. Environ. Stud. 29 (2), 1759-1769. https://doi.org/10.15244/pjoes/110447
  • 63. Pérez-Arlucea, M., Almecija, C., González-Villanueva, R., Alejo, I., 2011. Water dynamics in a barrier-lagoon system: controlling factors. J. Coast. Res. SI 64, 15-19.
  • 64. Rokni, K., Ahmad, A., Selamat, A., Hazini, S., 2014. Water feature extraction and change detection using multitemporal Landsat Imagery. Remote Sens. 6, 4173-4189. https://doi.org/10.3390/rs6054173
  • 65. Rouse, J.W., Haas, R.H, Schell, J.A., Deering, D.W., 1973. Monitoring vegetation systems in the Great Plains with ERTS (Earth Resources Technology Satellite). In: Proceedings of the Third Earth Resources Technology Satellite Symposium, Greenbelt, ON, Canada, 10-14 December, 309-317.
  • 66. Salameh, E., Frappart, F., Turki, I., Laignen, B., 2020. Intertidal topography using the waterline method from Sentinel-1 and Sentinel-2 images: the examples of Arcachon and Veys Bays in France. ISPRS J. Photogramm. Remote Sens. 163, 98-120. https://doi.org/10.1016/j.isprsjprs.2020.03.003
  • 67. Sebastiá-Frasquet, M.T., Aguilar-Maldonado, J.A., Santamaría-del Ángel, E., Estornell, J., 2019. Sentinel 2 analysis of turbidity patterns in a coastal lagoon. Remote Sens. 11 (24), 2926. https://doi.org/10.3390/rs11242926
  • 68 Sekertekin, A., 2019. Potential of global thresholding methods for the identification of surface water resources using Sentinel-2 satellite imagery and normalised difference water index. J. Appl. Remote Sens. 13 (4), 044507. https://doi.org/10.1117/1.JRS.13.044507
  • 69. Smakhtin, V. , 2004. Simulating the hydrology and mouth conditions of small, temporarily closed/open estuaries. Wetlands 24, 123-132. https://doi.org/10.1672/0277-5212(2004)024[0123:STHAMC]2.0.CO;2
  • 70. Sòria-Perpinyà, X., Vicente, E., Urrego, P., Pereira-Sandoval, M., Ruíz-Verdú, A., Delegido, J., Soria, J.M., Moreno, J.,2020. Remote sensing of cyanobacterial blooms in a hypertrophic lagoon (Albufera of Valencia, Eastern Iberian Peninsula) using multitemporal Sentinel-2 images. Sci. Total Environ. 698, 123305. https://doi.org/10.1016/j.scitotenv.2019.134305
  • 71. Sun, F., Sun, F., Chen, J., Gong, P., 2012. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. Int. J. Remote Sens. 33, 6854-6875. https://doi.org/10.1080/01431161.2012.692829
  • 72. Tagliapietra, D., Sigovini, M., Ghirardini, A.V., 2009. A review of terms and definitions to categorise estuaries, lagoons and associated environments. Mar. Freshw. Res. 60, 497e509. https://doi.org/10.1071/MF08088
  • 73. Vaičiūtė, D., Bučas, M., Bresciani M., Dabulevičienė, T,.Gintauskas, J.,Mėžinė, J., Tiškus, E., Umgiesser, G. Morkūnas, J.,De Santi,F.,Bartoli, M., 2021. Hot moments and Hotspots of cyanobacteria hyperblooms in the Curonian Lagoon (SE Baltic Sea) revealed via remote sensing-based retrospective analysis. Sci. Total Environ. 769, 145053. https://doi.org/10.1016/j.scitotenv.2021.145053
  • 74. Wang, Z., Liu, J., Li, J., Zhang, D.V., 2018. Multi-Spectral Water Index (MuWI): A native 10-m multi-spectral water index for accurate water mapping on Sentinel-2. Remote Sens. 10 (10), 1643. https://doi.org/10.3390/rs10101643
  • 75. Weidman, C.R., Ebert, J.R., 2013. In: Aubrey, D.G., Giese, G.S. (Eds.), Cyclic Spit Morphology in a Developing Inlet System, 44. American Geophysical Union, Washington DC, 186-212.
  • 76. Xie, H., Luo, X., Xu, X., Tong, X., Jin, Y., Pan, H., Tong, X., 2014. New hyperspectral difference water index for the extraction of urban water bodies by the use of airborne hyperspectral images.J. Appl. Remote Sens. 8, 5230-5237. https://doi.org/10.1117/1.JRS.8.085098
  • 77. Xu, H., 2005. A study on information extraction of water body with the modified normalised difference water index (MNDWI). Int. J. Remote Sens. 9 (5), 589-595. https://doi.org/10.1080/01431160600589179
  • 78. Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed im-agery. Int. J. Remote Sens. 27, 3025-3033. https://doi.org/10.1080/01431160600589179
  • 79. Yang, X., Zhao, S., Qin, X., Zhao, N., Liang, L., 2017. Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sens. 9 (6), 596. https://doi.org/10.3390/rs9060596
  • 80. Yáñez-Aranciabia, A., Day, J.W., Sánchez-Gil, P., Day, J.N., Lane, R.R., Zárate-Lomelíc, D., Alafita-Vásquez, H., Rojas-Galaviz, J.L., Ramírez-Gordillo, J., 2014. Ecosystems functioning: the basis for restoration and management of a tropical coastal lagoon, Pacific coast of Mexico. Ecol. Eng. 65, 88-100. https://doi.org/10.1016/j.ecoleng.2013.03.007
  • 81. Zhang, F., Li, J., Zhang, B., Shen, Q., Ye, H., Wang, S., Lu, Z., 2018. A simple automated dynamic threshold extraction method for the classification of large water bodies from Landsat-8 OLI water index images. Int. J. Remote Sens. 39 (11), 3429-3451. https://doi.org/10.1080/01431161.2018.1444292
  • 82. Zhang, T., Yang, X., Hu, S., Su, F., 2013. Extraction of coastline in aquaculture coast from multispectral remote sensing images: object-based region growing integrating edge detection. Remote Sens. 5 (9), 4470-4487. https://doi.org/10.3390/rs5094470
  • 83. Zhou, Y., Dong, J., Xiao, X., Xiao, T., Yang, Z., Zhao, G., Zou, Z., Qin, Y., 2017. Open surface water mapping algorithms: a comparison of water-related spectral indices and sensors. Water 9 (4), 256. https://doi.org/10.3390/w9040256
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11ae8bf2-fa9b-4930-931c-178e932352bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.