PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Proposed single-zone map projection system for Turkey

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The coordinate base of the maps or sheets produced is the Universal Transversal Mercator (UTM) conformal projection, and it is not possible to work in a single coordinate system in Turkey. Therefore, a transition from UTM to other conformal projections is required. For the countries extending in an east–west UTM zone width like Turkey, composite projection (CP), a double standard paralleling Lambert Conformal Conic (LCC) and double map projections (DP) are used widely. However, this process causes increase in working load and processing errors by users. This study aims to determine a common projection system that can be used in the whole country. In this context, a composite projection from UTM and LCC projection has been defined for the first time. According to the results obtained, map projection CP with the least distortion values in both east–west and north–south directions has been chosen. With the CP selection, a single coordinate system has been determined for medium- and large-scale maps. Projection correction formulas, scale factor and false origin have been determined for map coordinates in CP. These distortions are obtained with a difference of less than 1 cm for 1 km long sides and less than 0.003″ for the azimuth value of this side, when the correction formulas are used.
Rocznik
Tom
Strony
35--45
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Department of Geomatics Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey
autor
  • Department of Geomatics Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey
Bibliografia
  • [1] Bermejo-Solera, M. and Otero, J. (2009). Simple and highly accurate formulas for the computation of Transverse Mercator coordinates from longitude and isometric latitude. Journal of Geodesy, 83(1):1–12.
  • [2] Bowring, B. (1990). The Transverse Mercator projection–a solution by complex numbers. Survey Review, 30(237):325–342, doi: 10.1179/003962678791965183.
  • [3] Bowring, B. (1993a). Applicable complex and unreal geodesy (Section 1). Survey Review, 32(249):145–158, doi: 10.1179/sre.1993.32.249.145.
  • [4] Bowring, B. (1993b). Applicable complex and unreal geodesy (Section 2). Survey Review, 32(250):200–212, doi: 10.1179/sre.1993.32.250.200.
  • [5] Bugayevskiy, L. M. and Snyder, J. (1995). Map projections: A reference manual. CRC Press.
  • [6] Cory, M., Morgan, R., Bray, C., and Greenway, I. (2001). A new coordinate system for Ireland. In International Federation of Surveyors International Conference Proceedings, FIG XX Congress Melbourne, March, pages 6–11.
  • [7] Deakin, R., Hunter, M., and Karney, C. (2010). The Gauss-Krüger projection. In Proceedings of the 23rd Victorian regional survey conference, Warrnambool, 10–12 September, pages 1–20.
  • [8] Dennis, M. L. (2018). The state plane coordinate system: History, policy, and future directions. NOAA Special Publication NOS NGS, 13.
  • [9] Draheim, H. (1953). Allgemeine Formeln zur Berechnung der Richtungreduktionen und der Längereduktionen ausgewählter konformer Abbildungen: ein Beitrag zur Untersuchung der Formtreue der Bildkurven geodätischer Linien und zur Lösung der geodätischen Hauptaufgaben mit Hilfe geodätischer Koordinaten. Number 7.
  • [10] Engsager, K. and Poder, K. (2007). A highly accurate world wide algorithm for the transverse Mercator mapping (almost). In Proceedings of XXIII international cartographic conference (ICC2007), 4–10 August, Moscow, pages 4–10.
  • [11] Gojamanov, M. H. and Ismayilov, A. I. (2019). Experimental justification of implementation of the composite projection in Azerbaijan. Geodesy and Cartography, 68(2), doi: 10.24425/gac.2019.128462.
  • [12] Grafarend, E. (1995). The optimal universal transverse Mercator projection. In Geodetic Theory Today, pages 51–51. Springer, doi: 10.1007/978-3-642-79824-5_13.
  • [13] Grossmann, W. (1976). Geodatische Rechnungen und Abbildungen in der Landesvermessung. Stuttgart: Wittwer.
  • [14] Guo, J.-C., Shen, W.-B., and Ning, J.-S. (2020). Development of Lee's exact method for Gauss–Krüger projection. Journal of Geodesy, 94(6):1–16, doi: 10.1007/s00190-020-01388-2.
  • [15] Habib, M. (2008). Proposal for developing the Syrian stereographic projection. Survey Review, 40(307):92–101, doi: 10.1179/003962608X253547.
  • [16] Hartzell, P., Strunk, L., and Ghilani, C. (2002). Pennsylvania State plane coordinate system: converting to a single zone. Surveying and Land Information Science, 62(2):95–103.
  • [17] Hooijberg, M. (2012). Practical Geodesy: Using Computers. Springer Science & Business Media.
  • [18] Huryeu, Y. and Padshyvalau, U. (2007). Automated design of coordinate system for long linear objects. In Proceedings of the 11th ScanGIS2007 Conference, pages 147–155.
  • [19] Huryeu, Y. and Padshyvalau, U. (2008). How to create the best suitable map projection. In FIG Working Week, Stockholm.
  • [20] Ingwersen, M. (1996). Gauscher und Georaphischer Koordinaten mit Rekursionsformeln. Zeitschrift für Vermessungswesen, 3:345–356.
  • [21] Jenny, B. (2012). Adaptive composite map projections. IEEE Transactions on Visualization and Computer Graphics, 18(12):2575–2582, doi: 10.1109/TVCG.2012.192.
  • [22] Jenny, B. and Šavrič, B. (2018). Enhancing adaptive composite map projections: Wagner transformation between the Lambert azimuthal and the transverse cylindrical equal-area projections. Cartography and Geographic Information Science, 45(5):456–463, doi: 10.1080/15230406.2017.1379036.
  • [23] Karney, C. F. (2011). Transverse Mercator with an accuracy of a few nanometers. Journal of Geodesy, 85(8):475–485, doi: 10.1007/s00190-011-0445-3.
  • [24] Kaya, A. (1994). An alternative formula for finding the geodetic latitude from the isometric latitude. Survey Review, 32(253):450–452, doi: 10.1179/sre.1994.32.253.450.
  • [25] Klotz, J. (1993). Eine analytische Lösung der Gauß-Krüger-Abbildungen. Zeitschrift für Vermessungswesen, 118(3):106–116.
  • [26] Lee, L. P. (1962). The transverse Mercator projection of the entire spheroid. Empire Survey Review, 16(123):208–217, doi: 10.1179/sre.1962.16.123.208
  • [27] Lee, L. P. (1963). Scale and convergence in the transverse Mercator projection of the entire spheroid. Survey Review, 17(127):49–51, doi: 10.1179/sre.1963.17.127.49.
  • [28] LSMMIPR (2020). Large Scale Map And Map Information Production Regulation (in Turkish). The Union Of Turkish Engineers And Architects (TMMOB), Chamber of Survey and Cadastre Engineers, Ankara, Turkey.
  • [29] Milnor, J. (1969). A problem in cartography. The American Mathematical Monthly, 76(10):1101–1112, doi: 10.1080/00029890.1969.12000424.
  • [30] Mittermayer, E. (1993). Die Gauss'schen Koordinaten in sphärischer und ellipsoidischer Approximation/Konforme Abbildung. Zeitschrift für Vermessungswesen, 118:345–356.
  • [31] Nestorov, I. G. (1997). CAMPREL: a new adaptive conformal cartographic projection. Cartography and Geographic Information Systems, 24(4):221–227, doi: 10.1559/152304097782439295.
  • [32] Padshyvalau, U., Matkin, A., and Rymasheuskaja, M. (2005). Principles of design of projections for geographical information technologies. In Proceedings of the 10th Scandinavian Research Conference on Geographical Information Science/Scan GIS, Stockholm, pages 137–145.
  • [33] Pędzich, P. (2005). Conformal projection with minimal distortions. In XXII International Cartographic Conference Proceedings, FIG, 9–16 July, Spain.
  • [34] Šavrič, B. and Jenny, B. (2014). A new pseudocylindrical equal-area projection for adaptive composite map projections. International Journal of Geographical Information Science, 28(12):2373–2389, doi: 10.1080/13658816.2014.924628.
  • [35] Snyder, J. P. (1987). Map projections. A working manual. Washington, DC. US GEOLOGICAL SURVEY PROFESSIONAL PAPER 1395.
  • [36] Thomas, P. D. (1952). Conformal projections in geodesy and cartography, volume 4. US Government Printing Office.
  • [37] Thompson, E. H. (1975). A note on conformal map projections. Survey Review, 23(175):17–28, doi: 10.1179/sre.1975.23.175.17.
  • [38] Turiño, C. E. (2004). Accuracy of the coefficient expansion of the Transverse Mercator Projection. International Journal of Geographical Information Science, 18(6):559–576, doi: 10.1080/13658810410001701996.
  • [39] Turiño, C. E. (2008). Gauss Krüger projection for areas of wide longitudinal extent. International Journal of Geographical Information Science, 22(6):703–719, doi: 10.1080/13658810701602286.
  • [40] Vaníček, P. and Najafi-Alamdari, M. (2004). Proposed new cartographic mapping for Iran. Journal of Spatial Science, 49(2):31–42, doi: 10.1080/14498596.2004.9635020.
  • [41] Veverka, B. (2004). Křovák's projection and its use for the Czech Republic and the Slovak Republic. 50 years of the Research Institute of Geodesy, Topography and Cartography, 50:173–179.
  • [42] Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey review, 23(176):88–93, doi: 10.1179/sre.1975.23.176.88.
  • [43] Yang, Q., Snyder, J., and Tobler, W. (1999). Map projection transformation: principles and applications. CRC Press.
  • [44] Yildirim, F. (2004). Examining Alternative Methods for Zone Based UTM System. PhD thesis, KTU Fen Bilimleri Enstitusu, Trabzon, Turkey.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11ab13c6-3868-4e74-8411-625b021c60f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.