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Abstract

The coordinate base of the maps or sheets produced is the Universal Transversal Mercator (UTM) conformal projection, and it is
not possible to work in a single coordinate system in Turkey. Therefore, a transition from UTM to other conformal projections is
required. For the countries extending in an east—west UTM zone width like Turkey, composite projection (CP), a double standard
paralleling Lambert Conformal Conic (LCC) and double map projections (DP) are used widely. However, this process causes
increase in working load and processing errors by users. This study aims to determine a common projection system that can be
used in the whole country. In this context, a composite projection from UTM and LCC projection has been defined for the first time.
According to the results obtained, map projection CP with the least distortion values in both east—west and north—south
directions has been chosen. With the CP selection, a single coordinate system has been determined for medium- and large-scale
maps. Projection correction formulas, scale factor and false origin have been determined for map coordinates in CP. These
distortions are obtained with a difference of less than 1 cm for 1 km long sides and less than 0.003" for the azimuth value of this

side, when the correction formulas are used.
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1 Introduction

One of the main sources of cadastral activities, engineering projects,
geographical information system (GIS) applications to be accurate,
reliable and sustainable throughout the country is the unique pro-
jection coordinates used in scaled maps. In this context, it has been
aimed to reduce the distortions occurring in maps to minimum
levels by using correction formulas. This is achieved by scale and
map harmony. The fact that the coordinate system is not single
causes more than one start of coordinates throughout the country.
In the zone system, only two neighbouring zones can be converted.
If there are more than two zones, it is necessary to switch to another
projection system. This leads to an increase in processing load and
loss of time due to user errors.

Factors such as geodetic location, size and shape have been taken
into consideration in order to minimise distortions in the projection
selection of countries. However, due to both military and political
aims, projections’ choice for these criteria has been taken into ac-
count and the Universal Transverse Mercator (UTM) system is pre-
ferred in Turkey. Turkey is a country that extends in the east—west
direction. Therefore, the preference of UTM with increased projec-
tion distortion in this direction caused the use of more than one

UTM zone in the country. Therefore, coordinate unity cannot be es-
tablished in the ongoing Turkey’s National Geographic Information
System, the National Spatial and Spatial Data Infrastructure (NSDI)
studies and engineering projects exceeding one slice. The aim of
this study is to determine medium- and large-scale maps in the
country and a projection with a single non-UTM coordinate origin
for these projects. Therefore, the most suitable projection system
for Turkey is the Lambert conformal conical (LCC2) projection type,
inwhich the distortion values increase in the north—south direction.
The studies of the countries on the selection of different projections
other than UTM are available in the literature (Bugayevskiy and Sny-
der, 1995; Cory et al., 2001; Dennis, 2018; Habib, 2008; Hartzell et al.,
2002; Huryeu and Padshyvalau, 2007; Vanicek and Najafi-Alamdari,
2004;Veverka, 2004). In this article, it has been aimed to determine
a projection system by examining the applicability of LCC2 and ex-
ternal projection systems for Turkey, which lies in the east—west
direction, parallel to latitude and located in the mid—latitude belt
between the equator and the pole. Thus, a single-beginning and
single-zone projection system throughout the country, along both
the north—south and east—west directions, and a single coordinate
system in all medium- and large-scale sheets are defined.
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bm\_,f_\\,p/\“o T e ( o 1 (x,y) Projected coordinates or plane coordinates;
LA 1S i 36°N (N,E) Northing, Easting map of scale or sheet coordinates;

Figure 1. UTM zones for Turkey

2 Materials and Methods
2.1 Usage and disadvantages of UTM in Turkey

In Turkey, base maps in the scale of 1:25,000 are produced in Gauss—
Kruger (GK) mapping system with 6° zones. On the other hand,
large-scale cadastral maps in the scale of 1:1000 and standard topo-
graphic maps in the scale of 1:5000 and 1:10,000 are produced in
GK mapping system with 3° zones (LSMMIPR, 2020).

For Turkey, while the central meridians of GK projection with 3°-
wide zones (MUTM) are 27°, 30°, 33°, 36°, 39°, 42° and 45°, these
central meridians are 27°, 33°, 39° and 45° for GK projection with
6°-wide zones (UTM). There are four zones for the UTM system and
the numbers of these zones are 35, 36, 37 and 38. In order to avoid
misunderstandings, zone numbers are added before the easting
value in UTM coordinates (Figure 1).

In engineering projects that do not fit into a single zone, if there
are overlapping parts with the neighbour zones in their 0.5° or 1°
overlap area, the coordinate system is obtained by doing a zone
transformation. If the application area overflows the overlap area,
zone transformation would not be a suitable process. In this sit-
uation, it is not proper to work with a single coordinate system.
A transformation from the UTM to different coordinate systems
has to be done. The transformation and switching to other coordi-
nate systems cause errors and loss of time because the users do not
possess sufficient information. Therefore, the UTM is not sufficient
for engineering projects that do not fit into a single zone. Hence,
different representation methods should be used for these projects.
However, the methods that implement different approaches other
than the classical zone width approach have taken their place in the
literature (Yildirim, 2004).

2.2 Projection methods and data set for determination
of distortions

Given Turkey’s geodetic location and considering the origin of
a single coordinate system, projection zone width is increased
(I +3.5°) UTM, Composite (CP), LCC2 and Double (DP). 585 test
points have been selected in GRS80 ellipsoid and ITRF96 datum ref-
erence surface by creating a geographical grid network (0.5° x 0.5°)
within the geographical borders of Turkey (B = [35.5°N—42.5°N];
L = [26°E—45°E]). In order to distribute the distortions that occur
in all projections evenly, the starting coordinate has been taken as
the centre of the geodetic boundaries (Bg =39°N;Lg = 35.5°E). Thus,
it has been aimed to examine the distortions that may occur in the
border regions as they move away from the beginning. Common
formulas have been used for the arc to chord (T — t) and distance
(S —s) distortions in each projection. For these distortions, each test
point has been chosen as a starting point and 45° azimuth angle and
1-km edges have been produced from this point. The coordinates
of the second point of these edges have been calculated with the
help of the direct solution of geodetic (Vincenty, 1975). After the

q Isometric latitude for ellipsoid:
atanh(sin B) — e atanh(e sin B);

w Isometric latitude for sphere: atanh(sin ¢);
q,! Isometric coordinates;
I L-Lg;
A Ellipsoid azimuth;
S Ellipsoid geodetic or distance on ellipsoid;
s Plane or projection distance;
t Plane or projection azimuth;
v  Grid convergence of ellipsoid;
(T-1)
(S-5)
(T — t)map
(S = S)map
a Semi-major axis of ellipsoid;

The arc to chord distortion of projection (A—t—v);
Distance distortion of projection (S—s);

The arc to chord correction calculated from (x, y);
Distance correction calculated from (x, y);

b Semi-minor axis of ellipsoid;
¢ Polar radius of curvature;

e?  Eccentricity of ellipsoid squared;

e’ Second eccentricity of ellipsoid squared;
e 2.71828182845904523... Euler’s number;

G Meridian arc length from equator to latitude, merid-
ian distance;

M Radius of curvature in the meridian:
c/(1+ "> cos® B)3/2;

N Radius of curvature in the prime vertical:
¢/(1 + e cos® B)12;

R Radius of Gauss sphere: (MN)Y2 = ¢/(1 + e’> cos? B);
r Radius of curvature of the parallel (N cos B);
n?  e'2cos?B;
t tanB;
m  Point grid scale factor;

mpo  Grid scale factor assigned to central meridian (lon-
gitude) or parallels (latitude);

(By, B,) Standard parallels for Lambert conformal conic.

2.3 UTM methods with increased zone width

Inspired by the Mercator projection that had been developed in the
16th century, J. H. Lambert improved the Transversal Mercator (TM)
projection for sphere in the 17th century. TM has been developed
by C. F. Gauss in the early 19th century, but published by Schreiber
and Kruger for ellipsoid. Therefore, TM is also used as GK. Later,
ellipsoid formulas were re-examined by Hristow and the univariate
and bivariate power series used today were obtained. The current
usage type (Easting and Northing) of UTM was developed by the
US Army in 1947. Many countries worldwide use the UTM system
in mapping applications. Due to the increase in distortion in the



Table 1. by, coefficients

k Hayford (ED50 Datum) GRS80 (ITRF Datum)
0 0.001685628506068199 0.001678514257669278
1 -0.002787990035246185 -0.002776158956325202
2 0.001406144128951385 0.001400048837162363
3 -0.000359446088023138 -0.000357765818293036
4 0.000065818155380135 0.000065443766370321
5 -0.000012362414922592 -0.000012270448245007
6 0.000002705098435961 0.000002680736087258
7 -0.000000594185917121 -0.000000588141286135
8 0.000000108319174054 0.000000107115446740
9 -0.000000011483903104 -0.000000011348588957

east—west direction of the UTM system, 6° zone meridians have
been used. In addition, UTM can be modified for large-scale maps
and 3° zone meridians can be used regionally (Deakin et al., 2010;
Snyder, 1987).

The formulas used in UTM could only be used for the maxi-
mum ! = +3.5° from the initial longitude chosen in the 19th century
due to the lack of computational techniques. However, with the
development of mathematical computer software for numerical
computing (MATLAB, Maxima, Mathematica, Maple, etc.), new so-
lutions (Bermejo-Solera and Otero, 2009; Bowring, 1990, 1993a,b;
Deakin et al., 2010; Engsager and Poder, 2007; Grafarend, 1995; Guo
etal., 2020; Ingwersen, 1996; Karney, 2011; Klotz, 1993; Lee, 1962,
1963; Mittermayer, 1993; Thompson, 1975; Turifio, 2004, 2008)
have been developed for | > +3.5° by increasing the number of coef-
ficients in UTM. The coefficients used in the calculations are pre-
sented ready to the user. Mittermayer’s method has been preferred
in this study as it provides ease of calculation. The correlations in
this method are given below:

Ximit = Goo (4 +A@, )] (1)

Vmit = Goo [1+B(@,D)] (2)

A(gl)+B(g1) = :igbk(q ik 3)
=0

m=22 n=1 @

2=4(a) = 2 arctan (201 (5)

I=1(q)) = %arctanh (czisr}lllq> (6)

where Gy symbolises the meridian arc length between 0° and 90°
latitudes. Meridian convergence and differential scale factor used in
determining distortions are calculated with the help of the following
equations:

(1+C)tanl tanhq—-D 7
D tanl tanhq + (1 +C)

m=m(q,1l) = 1\?5:503 V(1+C)2 + D2 (8)

_ 2 coslcoshq ()

v =v(q,]) = arctan

7 cosh? q — sin? |

c(gl)+ip(al) = ﬁ:Zg(zbk +1)(q + i (10)
k=0

The by, coefficients in the Equation (3) and (10), are given in
Table1, in the range of 0—9. The geodetic boundaries of convergence
of distortion and meridional in Turkey obtained using this method
are shown in Figure 2.

2.4 Lambert conformal conic projection

J. H. Lambert developed a single and double standard parallel conical
projection for both sphere and ellipsoid in the 17th century. Double
standard parallel (B,; B,) LCC2 projection is preferred to work with a
single coordinate system in the entire country in order to reduce the
distortions that occur from the selected B, towards north and south
in the x-axis direction. Projection coordinate data are calculated
with the help of the following equations:

Xjer, = Ro —Rcos!’ (12)
Vieer, = Rsinl’ (12)
=15 (13)
I"= 8(L - Lo) (14)
R = Roel~5(4%0)] (15)
RN Cgs B1 fls(a1-q0)) = N2 Cgs B ol8(a2-00))  (16)
5= In (N; cos By) — In (N, cos By) (7)

Q2 —q1

The meridian convergence and differential scale factor used
in determining the distortions are calculated with the help of the
following equations (Bugayevskiy and Snyder, 1995; Grossmann,
1976; Hooijberg, 2012; Thomas, 1952; Yang et al., 1999):

y=I'=1Is (18)
_ N1cosBy [—5(qg—q1)] _ N2COSBy [—5(q—qy)]
M= NcosB ¢ ~ NcosB ¢ (19)

The selection of standard parallels varies according to the shape
and size of the study area to be projected. Therefore, the developed
equations are as follows:

Bn — Bs
k '’

Bn —Bs

B; = Bs + By =Bp + (20)
where Bs and B symbolise the southern and northern latitude
boundaries of the study area respectively. Also, k is a coefficient
that changes according to the shape of the region. If the region is
rectangular, k = 5; if it is a circle, k = 4; and if it is close to a rhom-
bus, k = 3 (Bugayevskiy and Snyder, 1995). Standard parallels B; =
37°30'N; B, = 40°30’N and k = 5 are taken for Turkey. Calculated
distortions and meridian convergence are shown in Figure 3.

2.5 Composite projection (CP)

The CP transcribes the map’s geometry to scale, to the map’s height-
to-width ratio and to the central latitude of the shown area by replac-
ing projections and adjusting their parameters. The CP indicates
the entire globe including poles; it portrays continents or larger
countries with less distortion and it can morph to the web Mercator
projection for maps displaying small areas. By mixing different
projections in order to reduce the deformation in scaled maps, ap-
plications have been developed for small-scale map applications
(Jenny, 2012; Jenny and Savri¢, 2018; Savri¢ and Jenny, 2014) as well
as large- and medium-scale maps.

CPs (Gojamanov and Ismayilov, 2019; Huryeu and Padshyvalau,
2007, 2008; Padshyvalau et al., 2005; Pedzich, 2005) including La-
grange polyconic projection (Bugayevskiy and Snyder, 1995; Yang
etal., 1999) and Chebyshev—Grave criteria (Milnor, 1969; Nestorov,
1997) are defined. CP is a type of projection that minimises dis-
tortions that increase in all directions as it moves away from the
selected coordinate origin and aims to provide users with formula
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Figure 2. Distortion sizes for Mittermayer method: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1°; (c) the
arc to chord (T — t) distortion, contour intervals 0.2°; (d) the distance (S — s) distortion, contour intervals 75 cm.

and calculation convenience. Basic formulas for CP are given below:

ch = klxl + k2X2 (21)
Vep = kiys + kaya (22)

where (x;,y1) and (x,,y,) values are the GK and LCC2 projection co-
ordinates used in this study, respectively. Considering the physical
size of Turkey’s geodetic boundaries, it is seen that there are dis-
tortions in both north—south and east—west directions. These two
projection methods have been chosen to reduce these distortions
in both directions. k; and k, are mixed projection coefficients and
calculated using the following equation:

_ iyl — lxal

(23)
ng] -]
K di " 1+ di (24)
1= r Kp =
1+ d,z( df{
ky =1—k (25)

The value of n in the Equation (23) symbolises the number of
points (585 points) calculated in practice. Coordinates of the second
projection can also be used in the calculation of dj,. In this study,
the d,, coefficients have been tested in both projections and LCC2
has been preferred because it reduces distortions. In order to pre-
fer CP, the projection equations (x;,y,) and (x,,y,) in Equation (6)
should be calculated. For this, isometric coordinate parameter pairs
can be written in terms of complex forms in conform projections
(Gojamanov and Ismayilov, 2019; Huryeu and Padshyvalau, 2007,
2008; Padshyvalau et al., 2005; Pedzich, 2005):

xj+iyj:F(q+il), j=1,2 (26)
10 '
Axj+iyp =) a(Aq+il) 27)
k=1
AX}' = Xj —Xg, Xo =Go (28)
Aq=q-qo, I=L-Lo (29)

The following equations are used to avoid calculation overhead
in complex functions:

10 10

Xj=Xo+ Y aPy; Vi= ) qQ j=1,2 (30)
k=1 k=1

Pj=P;_yP1 = Qj1Q01, P1=q—qo, Po=1 (31)

Qj = Pj_lQl - Qj_1P1; Qi=L-Lo, Q=0 (32)

Since the GK mapping accepts the equator as the beginning of
the x-axis, the G, value must be calculated. On the other hand, in
the LCC2 description, since the x-axis is accepted as the beginning
of the By, latitude, it is not necessary to calculate the G, value (Go
= 0). The g, coefficients are obtained by using the Taylor series
at latitude B, selected by taking | = 0 in accordance with the con-
formal description conditions of the analytical function derivative
(Grossmann, 1976):

_dx_ (dG\ _dF(q) _ . . _

“I‘Fq'(@)o' 4o =F @ =NcosB Jok  (33)

_dx_ (dGN  _dF(Q) _ o - Re8(a-d0)
al-ﬁ_(@)o- a0 = F (@) = Roe ez (o)
or

_1 (A% (D™ e —5(a-q0) o
N e A
0= (L6 _l(idﬁdﬁ> (‘LB) - NocosBo (¢,
272 \ dg o 2\dBdqdq/,’ \dq/, Mo
g -1 (9G) _1(ddGdB (37)
376 \dp ) "6 \dBdg dq

(0] (o]

The values of 5 and R, in the equations given above for LCC2
are calculated using the Equations (11-17). The effect of the a;, co-
efficients on the (x, y) coordinates falls below 1 mm after the 10th
iteration, considering the geographical borders of Turkey. These
coefficients are difficult to derive and calculate manually. MATLAB
software has been used for this process. These coefficients have
been calculated using a number of functions (syms, diff and com-
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Figure 3. Distortion sizes for LCC2: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1°; (c) the arc to chord
(T — t) distortion, contour intervals 0.2”’; (d) the distance (S — s) distortion, contour intervals 40 cm.

Table 2. a; coefficients in metres

| GK | LCC2 cp

x Hayford GRS80 Hayford GRS80 Hayford GRS80

(ED50 Datum) (ITRF Datum) (ED50 Datum) (ITRF Datum) (ED50 Datum) (ITRF Datum)
1 4963550.54140 4963327.33863 4961856.51702 4961633.36122 4961858.21105 4961635.05520
2 -1561831.78385 -1561761.55083 -1561480.06295 -1561409.82430 -1561480.41467 -1561410.17603
3 -174039.01315 -174022.53500 327595.12206 327580.38357 327093.48792 327078.78065
4 344383.18219 344355.40058 -51546.55823 -51544.23875 -51150.62849 -51148.33911
5 -97650.60029 -97639.86801 6488.61350 6488.32148 6384.47429 6384.19329
6 -37371.53049 -37368.38135 -680.64850 -680.61786 -717.33938 -717.30563
7 39232.35134 39,226.49432 61.19939 61.19663 100.37054 100.36193
8 -7671.34989 -7668.97005 -4.81481 -4.81460 -12.48135 -12.47875
9 -6850.12639 -6849.30900 0.33671 0.33670 -6.51375 -6.51295
10 5154.82567 5153.41787 -0.02119 -0.02119 5.13365 5.13225

plex) available in the MATLAB library. The g, coefficients for CP are 2.6

Conical double projection from ellipsoid to sphere

calculated by using Equations (26-29) or Equations (30-32) instead
of Equations (21) and (22) (Gojamanov and Ismayilov, 2019; Huryeu
and Padshyvalau, 2007, 2008; Padshyvalau et al., 2005; Pedzich,
2005):
a = kyaPX + kya (38)
Thus, the ease of calculation for CP is presented to the users
with the coefficients in Table 2.

The meridian convergence and differential scale factor used in
determination of the distortions are calculated as follows.

NcosB ’

10 P 10 P
=2 Ja" Q) K2 =} jaytPyy
j=1 j=1

v = arctan K (39)
K

Ky (40)

The distortions and meridian convergence calculated are shown
in Figure 4.

and sphere to plane (DP)

The conformal projection of ellipsoid to sphere is fixed and there are
many algorithms for conformal projection from sphere to plane. DP
consists of two stages: firstly, from the isometric coordinates in the
ellipsoid (g, I) to the isometric coordinates in the sphere (w,AM),
and then from the geodetic coordinates in the sphere (¢,A) to the
Gaussian sphere (Grossmann, 1976).

w+IAN=K; (q+1il) + K, (41)

Ky = \/1+¢€2cost By 42)

K, = arctanh (Ki sinBo) - Kiqo (43)
1

w = Klq + KZ (44)

AN=A—Ag :Kll, Ao :Lo (45)

¢ = arcsin(tanh(w)) (46)
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Figure 4. Distortion sizes for CP: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1°; (c) the arc to chord (T — t)
distortion, contour intervals 0.2"’; (d) the distance (S — s) distortion, contour intervals 40 cm.

The double standard parallel projection equations from sphere
to plane are as follows:

Xgp = Ro = Rcos(8(A = Ao)) (47)
Yap = Ro = Rsin(5(A = Ao)) (48)
R = Roel ~3(w~wo)] 49)
E - me[é(wl—wo)] - me[é(wz—wo)] (50)
o - o -
5= In(R; cos 1) — In(R; cos ¢-) (51)
Wy — W1
Ry =c/(1+e?cos?B;); R, =c/(1+e?cos?B,) (52)

The meridian convergence and differential scale factor used in
determination of distortions are calculated as follows (Bugayevskiy
and Snyder, 1995; Grossmann, 1976):

v = 8(A = Ap) (53)
_ R1COs @1 [—5(w-wy)] - R2aCOS @2 [—5(w-w,)]
m= Rcos ¢ ¢ " Rcos ¢ € (54)

The calculated distortions and meridian convergence are shown
in Figure 5.

2.7 Examination of the projections and a new proposal
for Turkey

Considering the distortions in Figures 2—5, it is seen that the dis-
tortion in the Mittermayer method increases as it moves away from
the starting meridian in the east—west direction compared to other
methods. This means distortion of the size of the map in the whole
country in large- and medium-sized maps. When the deforma-
tions in the other three methods are examined, it is seen that the
edge distortion of CP gives better results between standard parallels
compared to LCC2 and DP. In this study, for the first time in Turkey,
CPU, GK and LCC2 depictions are used together. The combination of
GK and LCC2 equations for the CP depiction equations can be seen
as an additional computational burden on users. However, consider-

ing the geographical borders of Turkey, the coefficients to be used
in the solution of Equations (21, 22) and (26—29) are calculated
and presented to the users in Tables 2 and 3. Thus, both ease of
calculation is provided to the users and the edge distortion between
the latitudes (37°30’-40°30’) falls below 20 cm. The coefficients
given in Tables 3 and 4 for CP are valid only for By = 39°. For the
use of other countries, it is necessary to calculate a new average
latitude value of the study area. Calculations for some points for CP
are given in Table 5.

2.8 Calculation of geodetic coordinates from CP inverse
projection coordinates

It is necessary to know the geodetic coordinates for transformation
from the map coordinates of the newly defined system to the old
system and for transition to geocentric coordinates in the Global
Navigation Sattellite System (GNSS) application. This is done by in-
verse transformation from either GK or LCC2 projection coordinates
(Equations (41—-44)):

10
Aq+il= Y b(ax+iyk (55)
k=1
or
10 10
q=qo+ Z ka;U L=Lo+ Zka;< (56)
k=1 k=1
P/ =P/_,Pi—Q_,0i, Pj=Ax, Pj=1 (57)
Q =Pi_,Qi—QP, Q=y, Q=0 (58)

For the value of By = 39°, the by coefficients are calculated using
the formulas given below:

b = dg\ _ 1
1o (E)O_NcosB

G
17 \dG /o~ N, cosBed(ado)

} 6K (59)

} LCC2 (60)
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Figure 5. Distortion sizes for double projection: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1°; (c) the arc to
chord (T — t) distortion, contour intervals 0.2"; (d) the distance (S — s) distortion, contour intervals 40 cm.

or

1 1
n! 5"mg—5(q—‘10) !

1 (d*q\ _ d dq dB dB\ _ 1

b=3 (@)0 (@waw), (@), m ©
_ dq\ _1/(d d*qdB

b3 = (dcz> "6 <dBdGZdG>O (63)

All calculated by, coefficients are given in Table 3. Calculation
of the values of § and R, used in the above equations are given in
Equations (11—-17). The following equations are used for transition
from isometric latitude to geodetic latitude given in Equations (55—
58) (Kaya, 1994):

bn = q=q0 } LCC2 (61)

, 1
B:X+1/251n2x[e2+e4 cos’x — ——— | +
6sin“ x

+eb <cos4 X = > + ! ) + (64)

6sin®x cos2x  30sin*x

49 . 31 ]
120 sin%y coséyx  252sin%x
x = arcsin(tanh q) (65)

+e8 G:os(’x —25sin?x cos’x +

Also, b, coefficients can be obtained by using Equation (66):
bF® = kab{X + kyb[ e (66)
The reverse conversion process is performed using Equa-
tions (55—58) and (66). This process is more practical for users.

The coefficients calculated from Equations (59—63) and (66) are
shown in Table 3.

2.9 Correction formulas of CP

In engineering projects where distance and direction are measured,
it is necessary to reduce lengths and direction. Since map coordi-

nates are used in the projects, giving the reduction formulas over
these coordinates provides ease of calculation for the users. The re-
duction formulas commonly used for conformal descriptions (Dra-
heim, 1953) can also be used for CP:

(T - t)map = 1 X1AY + L AXAY + t3xly1AX + t4X%Ay+

N 5 3 N (67)
+ YT AY + tgXTY1 AX + t7)7 AX + tgXq YT AY
where:
boiap. g o ltmd __fo(14m3)
1 =3k 2 = 6N2’ 3= W;
; to (1—3110—411 ) . ts
4T 0 BT T 68
4N 2 (68)
- 40+108n2 + 6304 —33  —10n3 —7nk +3t3
6" 4 G 4
36Ng 12Ng
t8 = —t6
_ 2 3
(S—$)map =5 (sl +S5X] + S3X1AX + 5, X7+
6
, . . . (69)
+S5X1Y1 + SeXy + S7X1V1 * SgYy
where:
Ng cosB
sl=7°bcp e -3 S2=53=t;
_to (1-3n3 - 4ng) —lmo)
54 = = _t3;
6N3 70)
70
_5+20m3+10n4-32 1303 —8nk+ot2
Se = 4 y S7 = 7 )
24N 4N&
10n2 +10 t2
sg = no T'I[? 3
24N4
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Table 3. by, coefficients

| GK LCC2 cp
K Hayford GRS80 Hayford GRS80 Hayford GRS80
(ED50 Datum) (ITRF Datum) (ED50 Datum) (ITRF Datum) (ED50 Datum) (ITRF Datum)

1 |2.01468684898033e-07 2.01477745023166e-07 | 2.01537468197565e-07 2.01546532602613e-07 | 2.01537399414265¢-07 2.01546463815034e-07
2 [1.27719412250272e-14 1.27730899691869e-14 | 1.27821479148768e-14 1.27832976273027e-14 | 1.27821377081870e-14 1.27832874196446e-14
3 [1.90606580617672e-21 1.90630871057434e-21 |1.08091269101801e-21 1.08105852690209e-21 | 1.08173784413317e-21 1.08188377708576e-21
4 |2.33217785338216e-28 2.33259302576196e-28 | 1.02832386626856e-28 1.02850885526054e-28 | 1.02962772025567¢-28 1.02981293943104¢-28
5 [3.40288110341843e-35 3.40362666718644e-35 | 1.04351317940802e-35 1.04374783445450e-35 | 1.04587254733203e-35 1.04610771328723e-35
6 |4.92399104670312e-42 4.92529126527513e-42 | 1.10304880523434e-42 1.10334646159951e-42 | 1.10686974747581e-42 1.10716840640319e-42
7 | 7.46687045549524e-49 7.46916636213681e-49 | 1.19929486733841e-49 1.19967244054757e-49 | 1.20556244292657e-49 1.20594193446916e-49
8 |1.14705437919241e-55 1.14745779438984e-55 |1.33110423181849e¢-56 1.33158317899727¢-56 | 1.34124367137860e-56 1.34172617376217e-56
9 |1.79545605447638e-62 1.79616622523578e-62 | 1.50085099606334e-63 1.50145853535200e-63 | 1.51730470561204e-63 1.51791873906901e-63
10 | 2.84208801069137e-69 2.84333725613141e-69 | 1.71339747802719e-70 1.71416813538263e-70 | 1.74010496065608e-70 1.74088733980856e-70

Table 4. Coefficients for correction formulas

k t Sk

1 -1.230817046856762e-14 3.410737419053955e-04
2 -4.102723489522539e-15 -1.230817046856762e-14
3 -1.560602822242498e-21 -1.230817046856762e-14
4 -7.675969852812854e-22 -5.117313235208569e-22
5 7.803014111212491e-22 1.560602822242498e-21
6 -2.882524686831016e-28 7.799576438254665e-29
7 9.649191199496467e-29 2.876383454639922e-28
8 2.882524686831016e-28 -4.824471121337579e-29

The Ax(x, — x;) and Ay(y, — y;) reductions are the difference
between the map coordinate values of the edge to be calculated. In
order to provide ease of calculation to the users, t, and s, coeffi-
cients in Equations (66—68) are calculated in By = 39° latitude and
ITRF96 datum are given in Table 4. These coefficient values that
can be used for up to 2 km in length can be measured in the land of
Turkey’s geodetic boundaries.

These differences Tt = (T — t) — (T — t)map and Ss = (S —s) —
(S — s)map are calculated on the sides of 1and 2 km and are given
in Figure 6. It is observed that the edge distortion (S — s) in Equa-
tions (66—68) is achieved with an accuracy of 1 cm for 1 km and less
than 2 ¢cm for 2 km. In addition, the map distortion (T — t) in Equa-
tions (66—68) provides an accuracy of less than 0.003" for 1 km and
0.006" for 2 km. In this context, Equations (66—68) are sufficient
for the location accuracy of the angle and distance measurements
made in the detail acquisition of projects using large-scale maps
and in the application to the terrain.

2.10 Choice of scale correction factor (mg) and false ori-
gin for Turkey

Since large-scale maps (1:1000—1:10,000) cover small areas, my is
taken as 1 for the whole country (Figure 4a). Thus, in engineering
projects that require detailed measurement from the field and appli-
cation to the field, the land and the map remain the same in 1:1 scale.
This provides the users with the ease of completing the application
without any additional transformation process in the application of
the data produced from large-scale maps to the terrain. However,
this is not the case with medium-scale maps (1:25,000—1:250,000).
In these maps, due to the area they occupy, distortion increases
in the near regions of the depiction centre and as they move away
from the depiction centre. For the CP representation, these maps
also increase as distortions increase from the chosen initial latitude
to the north and south, and particularly at the system edges. It may
be possible to keep this growth within a certain boundary by pre-
serving the conditions of representation, and especially to reduce
it within the country borders. So, m could be slightly reduced for

the whole country. For this, my must be equal to 1 at xmax/2. Thus,
in the initial latitude, mq will be slightly smaller than 1, but in the
border latitudes (m — 1), the difference will be halved. xmax/2 cor-
responds to the latitude B = 40.50° and mg = 1 for CP. The mgvalue
can be chosen as 0.9995, the average value between B = 40.5° and
Bmax= 42° in CP (Figure 7).

In order to not work with negative coordinates in scaled maps, at
the beginning of the coordinate of the description, negative x values
south of latitude By = 39° and negative y values west of longitude
Lo = 35.5° should be positive. For this, a fixed value (false) must
be specified to add to all projection coordinates (xcp, ycp). Negative
values of CP coordinates are Xmax = —388 km and ymax = —861 km
in Turkey (Table 5). Therefore, false northing = 500,000 m and
false easting = 1,000,000 m values are determined for positive co-
ordinates. Thus, scale maps for CP (scale map) or sheet (sheet)
coordinates can be calculated in Turkey:

(71)
(72)

Northing (N) = mgxcp + 500,000
Easting (E) = MgYycp *+ 1,000,000

In these equations, mg value is taken as 1 for large-scale maps
and 0.9995 for medium- and small-scale maps.

The meanings of the parameters symbolised in Table 5 are ex-
plained in Section 2.2. This table has been produced by taking into
account the latitude and longitude limit values of Turkey. Distortion
values have been calculated in CP as a result of calculations made
using MATLAB software.

3 Results and Discussion

In this study, projections that can be used outside the UTM sys-
tem with the beginning of seven meridian zones are examined in
Turkey. As it is known in the UTM system, zone transformation
is performed in projects in two zones, and transition to a differ-
ent projection is performed for projects falling into more than two
zones. This leads to an increase in working load and working errors
caused by users. In this context, Mittermayer with increased merid-
ian zone width, CP, double standard parallel LCC2 and ellipsoid to
sphere, spherical to plane conformable DP, which are suitable for
the geodetic location and shape of our country, except UTM, have
been examined in detail.

In this study, the applicability of CP, which is used for small-
scale maps among the discussed projections, for large- and
medium-scale maps has been investigated for the first time. Also,
for the first time in CP, GK and LCC2 projections have been mixed
in order to reduce distortions in all directions. The distortions of
the four projection methods have been calculated with the test
points determined in the 0.5° x 0.5° geodetic grid covering the
geodetic borders of Turkey. According to the results, it has been
observed that CP especially has less length distortion compared to



(d)

Figure 6. Correction values based on correction formulas for accuracy analysis in CP: (a) Ss difference for 1 km, counter interval 2 mm; (b) Ss difference
for 2 km, counter interval 2 mm; (c) Tt difference for 1 km, contour intervals 0.001"’; (d) Tt difference for 2 km, contour intervals 0.001"’.

Table 5. Numerical values for CP (for 1 km) (k; = 0.001, k; =1 —k;)

BEY LT Xetm)  Yelm) M me=d v OO @oomy mml G (s ssim)
35.5 26.0 -343547.200 -861653.097 1.001502 0.998500 -5.97880628 0.6806 0.6805 0.0000 -1.499 -1.489 -0.010
36.0 26.5 -292879.879 -810972.322 1.001018 0.998983 -5.66419331 0.5850 0.5852 -0.0002 -1.015 -1.005 -0.010
36.5 27.0 -241925.869 -760876.119 1.000607 0.999394 -5.34957328 0.4890 0.4893 -0.0003 -0.604 -0.595 -0.009
37.0 27.5 -190685.986 -711365.636 1.000269 0.999731 -5.03494624 0.3924 0.3927 -0.0003 -0.267 -0.259 -0.008
37.5 28.0 -139161.028 -662442.072 1.000005 0.999995 -4.72031223 0.29562 0.2955 -0.0003 -0.004 0.003 -0.007
38.0 28.5 -87351.773 -614106.679 0.999816 1.000184 -4.40567130 0.1974 0.1976 -0.0002 0.185 0.191 -0.006
38.5 29.0 -35258.976 -566360.762 0.999702 1.000298 -4.09102350 0.0989 0.0990 -0.0001 0.299 0.303 -0.005
39.0 29.5 17116.629 -519205.677 0.999662 1.000338 -3.77636888 -0.0002 -0.0002 0.0000 0.338 0.341 -0.003
39.5 30.0 69774.333 -472642.839 0.999699 1.000301 -3.46170748 -0.1000 -0.1002 0.0002 0.301 0.303 -0.002
40.0 30.5 122713.451 -426673.712 0.999812 1.000188 -3.14703936 -0.2006 -0.2009 0.0003 0.187 0.188 -0.001
40.5 31.0 175933.327 -381299.820 1.000002 0.999998 -2.83236456 -0.3019 -0.3024 0.0005 -0.003 -0.004 0.001
41.0 31.5 229433.329 -336522.741 1.000269 0.999731 -2.51768313 -0.4040 -0.4047 0.0007 -0.271 -0.273 0.002
42.0 32.0 338751.594 -290207.607 1.001040 0.998961 -2.20301786 -0.6108 -0.6117 0.0009 -1.043 -1.047 0.004
42.5 32.5 392851.626 -246933.182 1.001545 0.998457 -1.88831991 -0.7155 -0.7166 0.0011 -1.548 -1.553 0.005
35.5 33.0 -385425.899 -227133.656 1.001494 0.998508 -1.57336268 0.6816 0.6812 0.0004 -1.490 -1.484 -0.006
36.0 33.5 -331015.720 -180494.967 1.001010 0.998991 -1.25870410 0.5861 0.5855 0.0005 -1.007 -1.002 -0.005
36.5 34.0 -276364.523 -134461.147 1.000600 0.999401 -0.94403851 0.4900 0.4894 0.0007 -0.597 -0.593 -0.004
37.0 34.5 -221473.213 -89033.279 1.000263 0.999737 -0.62936594 0.3934 0.3926 0.0008 -0.261 -0.2568 -0.003
38.0 35.0 -110853.214 -43907.730 0.999811 1.000189 -0.31468987 0.1983 0.1974 0.0009 0.189 0.191 -0.002
39.0 35.5 0.000 0.000 0.999659 1.000341 0.00000000 0.0007 -0.0004 0.0011 0.341 0.341 0.000
39.5 36.0 55609.954 42993.428 0.999696 1.000304 0.31470008 -0.0992 -0.1004 0.0012 0.303 0.303 0.001
40.0 36.5 111461.668 85375.887 0.999810 1.000190 0.62940691 -0.1997 -0.2010 0.0013 0.189 0.188 0.002
40.5 37.0 167554.386 127145.900 1.000000 1.000000 0.94412043 -0.3010 -0.3024 0.0014 -0.002 -0.004 0.002
41.0 37.5 223887.372 168301.932 1.000268 0.999732 1.25884059 -0.4031 -0.4047 0.0015 -0.270 -0.273 0.003
41.5 38.0 280459.918 208842.389 1.000615 0.999386 1.57356734 -0.5061 -0.5077 0.0016 -0.617 -0.621 0.004
42.0 38.5 337271.342 248765.618 1.001040 0.998961 1.88830062 -0.6099 -0.6116 0.0018 -1.043 -1.047 0.004
42.5 39.0 394320.989 288069.904 1.001545 0.998457 2.20304037 -0.7145 -0.7164 0.0019 -1.549 -1.554 0.005
35.5 39.5 -380561.376 363342.720 1.001495 0.998507 2.51738164 0.6827 0.6812 0.0015 -1.491 -1.484 -0.007
36.0 40.5 -320609.223 451047.199 1.001012 0.998989 3.14676397 0.5872 0.5856 0.0016 -1.009 -1.002 -0.007
36.5 41.0 -262583.287 492747.097 1.000603 0.999398 3.46148011 0.4912 0.4895 0.0016 -0.600 -0.593 -0.007
37.0 41.5 -204364.419 533824.364 1.000266 0.999734 3.77620340 0.3946 0.3929 0.0017 -0.264 -0.2568 -0.006
37.5 42.0 -145953.593 574277.932 1.000004 0.999996 4.09093380 0.2974 0.2956 0.0018 -0.003 0.004 -0.006
38.0 42.5 -87351.773 614106.679 0.999816 1.000184 4.40567130 0.1996 0.1977 0.0019 0.185 0.191 -0.006
38.5 43.0 -28559.910 653309.428 0.999703 1.000297 4.72041584 0.1011 0.0991 0.0020 0.298 0.304 -0.006
39.0 43.5 30421.060 691884.946 0.999665 1.000335 5.03516738 0.0020 -0.0002 0.0023 0.335 0.341 -0.006
39.5 44.0 89590.217 729831.941 0.999703 1.000297 5.34992587 -0.0978 -0.1003 0.0025 0.297 0.303 -0.006
40.0 44.5 148946.655 767149.065 0.999817 1.000183 5.66469127 -0.1983 -0.2012 0.0029 0.182 0.189 -0.007
42.5 45.0 429557.127 780679.388 1.001552 0.998451 5.97971209 -0.7135 -0.7181 0.0046 -1.555 -1.5561 -0.004
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Figure 7. Scale correction factor for CP

LCC2. Thus, it is proven that a projection may also use CP and LCC2,
except for Turkey.

Some definitions need to be made in order to be able to use CP in
country mapping system, medium- and large-scale maps and en-
gineering projects, which include detail and application processes.
These definitions are the transformation of geographic and projec-
tion coordinates, direction and length correction formulas, scale
correction factor (my), false easting and false northing, respectively.
Also, it is defined as the coefficient in terms of providing conve-
nience to users in this study in Turkey. It is sufficient to calculate
these coefficients once according to the initial latitude (By ) and they
are valid everywhere within the geodetic boundaries of the country.
These coefficients are calculated in ITRF96 and ED50 datum and
given to users in this study.

Geodetic—projection coordinate transformation in CP is calcu-
lated with the help of Equations (26—29, 38). The coefficients are
given in Table 2. In addition, the Geodetic—projection coordinate
mapping is performed using Equations (55—58, 66). Coefficients
are given in Table 3. Direction and length corrections are calculated
with Equations (67—69) and the coefficients are given in Table 4.
Equations (67—69) are sufficient to determine the position accuracy
of the angle and distance measurements made with the total station
in places where GNSS cannot be measured in the detail acquisition
and application of the projects produced on large-scale maps.

4 Conclusions

As is the case in Turkey, slice transformation should be performed
for projects in two slices in the UTM system and a different projec-
tion system should be used for projects with more than two slices.
This situation causes the working load to increase and user-based
errors to occur. In this study, projections that can be used outside
of UTM are examined in Turkey. Mittermayer, mixed projection
(CP), double standard parallel LCC2 and conformal DP to ellipsoidal
sphere and from sphere to plane, suitable for Turkey’s geographical
location and shape, have been studied in detail.

According to the results obtained, map projection CP with the
least distortion values in both east—west and north—south direc-
tions has been selected. With the CP selection, a single coordinate
system has been determined for medium- and large-scale maps.
Projection correction formulas, scale factor and false origin have
been calculated for map coordinates in CP. These distortions are
obtained with a difference of less than 1 cm for 1 km long sides and
less than 0.003” for the azimuth value of this side, when the cor-
rection formulas are used. In addition, in this study, equations have
been produced in the form of coefficients in order to provide conve-
nience to the users. These coefficients are calculated separately for
ITRF and ED50 datums according to the initial latitude (By) and it is
sufficient to calculate once. These coefficients are valid everywhere
within the geographical boundaries.

No potential conflict of interest was reported by the author(s).
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