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Abstract

The coordinate base of the maps or sheets produced is the Universal Transversal Mercator (UTM) conformal projection, and it isnot possible to work in a single coordinate system in Turkey. Therefore, a transition from UTM to other conformal projections isrequired. For the countries extending in an east–west UTM zone width like Turkey, composite projection (CP), a double standardparalleling Lambert Conformal Conic (LCC) and double map projections (DP) are used widely. However, this process causesincrease in working load and processing errors by users. This study aims to determine a common projection system that can beused in the whole country. In this context, a composite projection from UTM and LCC projection has been defined for the first time.According to the results obtained, map projection CP with the least distortion values in both east–west and north–southdirections has been chosen. With the CP selection, a single coordinate system has been determined for medium- and large-scalemaps. Projection correction formulas, scale factor and false origin have been determined for map coordinates in CP. Thesedistortions are obtained with a difference of less than 1 cm for 1 km long sides and less than 0.003′′ for the azimuth value of thisside, when the correction formulas are used.
Key words: Universal Transverse Mercator (UTM); Lambert conformal conic (LCC); composite projection; distortion; scale.

1 Introduction

One of the main sources of cadastral activities, engineering projects,geographical information system (GIS) applications to be accurate,reliable and sustainable throughout the country is the unique pro-jection coordinates used in scaled maps. In this context, it has beenaimed to reduce the distortions occurring in maps to minimumlevels by using correction formulas. This is achieved by scale andmap harmony. The fact that the coordinate system is not singlecauses more than one start of coordinates throughout the country.In the zone system, only two neighbouring zones can be converted.If there are more than two zones, it is necessary to switch to anotherprojection system. This leads to an increase in processing load andloss of time due to user errors.Factors such as geodetic location, size and shape have been takeninto consideration in order to minimise distortions in the projectionselection of countries. However, due to both military and politicalaims, projections’ choice for these criteria has been taken into ac-count and the Universal Transverse Mercator (UTM) system is pre-ferred in Turkey. Turkey is a country that extends in the east–westdirection. Therefore, the preference of UTM with increased projec-tion distortion in this direction caused the use of more than one

UTM zone in the country. Therefore, coordinate unity cannot be es-tablished in the ongoing Turkey’s National Geographic InformationSystem, the National Spatial and Spatial Data Infrastructure (NSDI)studies and engineering projects exceeding one slice. The aim ofthis study is to determine medium- and large-scale maps in thecountry and a projection with a single non-UTM coordinate originfor these projects. Therefore, the most suitable projection systemfor Turkey is the Lambert conformal conical (LCC2) projection type,in which the distortion values increase in the north–south direction.The studies of the countries on the selection of different projectionsother than UTM are available in the literature (Bugayevskiy and Sny-der, 1995; Cory et al., 2001; Dennis, 2018; Habib, 2008; Hartzell et al.,2002; Huryeu and Padshyvalau, 2007; Vaníček and Najafi-Alamdari,2004; Veverka, 2004). In this article, it has been aimed to determinea projection system by examining the applicability of LCC2 and ex-ternal projection systems for Turkey, which lies in the east–westdirection, parallel to latitude and located in the mid–latitude beltbetween the equator and the pole. Thus, a single-beginning andsingle-zone projection system throughout the country, along boththe north–south and east–west directions, and a single coordinatesystem in all medium- and large-scale sheets are defined.
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Figure 1. UTM zones for Turkey

2 Materials andMethods

2.1 Usage and disadvantages of UTM in Turkey

In Turkey, base maps in the scale of 1:25,000 are produced in Gauss–Kruger (GK) mapping system with 6◦ zones. On the other hand,large-scale cadastral maps in the scale of 1:1000 and standard topo-graphic maps in the scale of 1:5000 and 1:10,000 are produced inGK mapping system with 3◦ zones (LSMMIPR, 2020).For Turkey, while the central meridians of GK projection with 3◦-wide zones (MUTM) are 27◦, 30◦, 33◦, 36◦, 39◦, 42◦ and 45◦, thesecentral meridians are 27◦, 33◦, 39◦ and 45◦ for GK projection with6◦-wide zones (UTM). There are four zones for the UTM system andthe numbers of these zones are 35, 36, 37 and 38. In order to avoidmisunderstandings, zone numbers are added before the eastingvalue in UTM coordinates (Figure 1).In engineering projects that do not fit into a single zone, if thereare overlapping parts with the neighbour zones in their 0.5◦ or 1◦overlap area, the coordinate system is obtained by doing a zonetransformation. If the application area overflows the overlap area,zone transformation would not be a suitable process. In this sit-uation, it is not proper to work with a single coordinate system.A transformation from the UTM to different coordinate systemshas to be done. The transformation and switching to other coordi-nate systems cause errors and loss of time because the users do notpossess sufficient information. Therefore, the UTM is not sufficientfor engineering projects that do not fit into a single zone. Hence,different representation methods should be used for these projects.However, the methods that implement different approaches otherthan the classical zone width approach have taken their place in theliterature (Yildirim, 2004).
2.2 Projectionmethods and data set for determination

of distortions

Given Turkey’s geodetic location and considering the origin ofa single coordinate system, projection zone width is increased(l ± 3.5◦) UTM, Composite (CP), LCC2 and Double (DP). 585 testpoints have been selected in GRS80 ellipsoid and ITRF96 datum ref-erence surface by creating a geographical grid network (0.5◦ × 0.5◦)within the geographical borders of Turkey (B = [35.5◦N–42.5◦N];
L = [26◦E–45◦E]). In order to distribute the distortions that occurin all projections evenly, the starting coordinate has been taken asthe centre of the geodetic boundaries (B0 = 39◦N; L0 = 35.5◦E). Thus,it has been aimed to examine the distortions that may occur in theborder regions as they move away from the beginning. Commonformulas have been used for the arc to chord (T – t) and distance(S – s) distortions in each projection. For these distortions, each testpoint has been chosen as a starting point and 45◦ azimuth angle and1-km edges have been produced from this point. The coordinatesof the second point of these edges have been calculated with thehelp of the direct solution of geodetic (Vincenty, 1975). After the

calculation of projection distortions, arc to chord (T – t) map anddistance (S – s) map correction values have been calculated withthe help of projection coordinates. Nomenclature of variables usedin projection algorithms has been given in the list below:
(B, L) Ellipsoid geographical latitude and longitude;

(φ, λ) Sphere geographical latitude and longitude;
(B0, L0) Central meridian (latitude) and longitude of centralmeridian;

(x, y) Projected coordinates or plane coordinates;
(N, E) Northing, Easting map of scale or sheet coordinates;

q Isometric latitude for ellipsoid:atanh(sin B) – e atanh(e sin B);
ω Isometric latitude for sphere: atanh(sinφ);

q, l Isometric coordinates;
l L – L0;

A Ellipsoid azimuth;
S Ellipsoid geodetic or distance on ellipsoid;
s Plane or projection distance;
t Plane or projection azimuth;
γ Grid convergence of ellipsoid;

(T – t) The arc to chord distortion of projection (A–t–γ);
(S – s) Distance distortion of projection (S–s);

(T – t)map The arc to chord correction calculated from (x, y);
(S – s)map Distance correction calculated from (x, y);

a Semi-major axis of ellipsoid;
b Semi-minor axis of ellipsoid;
c Polar radius of curvature;

e2 Eccentricity of ellipsoid squared;
e′2 Second eccentricity of ellipsoid squared;

e 2.71828182845904523. . . Euler’s number;
G Meridian arc length from equator to latitude, merid-ian distance;

M Radius of curvature in the meridian:
c/(1 + e′2 cos2 B)3/2;

N Radius of curvature in the prime vertical:
c/(1 + e′2 cos2 B)1/2;

R Radius of Gauss sphere: (MN)1/2 = c/(1 + e′2 cos2 B);
r Radius of curvature of the parallel (N cos B);

η2 e′2 cos2 B;
t tan B;

m Point grid scale factor;
m0 Grid scale factor assigned to central meridian (lon-gitude) or parallels (latitude);

(B1, B2) Standard parallels for Lambert conformal conic.
2.3 UTMmethods with increased zone width

Inspired by the Mercator projection that had been developed in the16th century, J. H. Lambert improved the Transversal Mercator (TM)projection for sphere in the 17th century. TM has been developedby C. F. Gauss in the early 19th century, but published by Schreiberand Kruger for ellipsoid. Therefore, TM is also used as GK. Later,ellipsoid formulas were re-examined by Hristow and the univariateand bivariate power series used today were obtained. The currentusage type (Easting and Northing) of UTM was developed by theUS Army in 1947. Many countries worldwide use the UTM systemin mapping applications. Due to the increase in distortion in the
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Table 1. bk coefficients
k Hayford (ED50 Datum) GRS80 (ITRF Datum)

0 0.001685628506068199 0.001678514257669278
1 -0.002787990035246185 -0.002776158956325202
2 0.001406144128951385 0.001400048837162363
3 -0.000359446088023138 -0.000357765818293036
4 0.000065818155380135 0.000065443766370321
5 -0.000012362414922592 -0.000012270448245007
6 0.000002705098435961 0.000002680736087258
7 -0.000000594185917121 -0.000000588141286135
8 0.000000108319174054 0.000000107115446740
9 -0.000000011483903104 -0.000000011348588957

east–west direction of the UTM system, 6◦ zone meridians havebeen used. In addition, UTM can be modified for large-scale mapsand 3◦ zone meridians can be used regionally (Deakin et al., 2010;Snyder, 1987).The formulas used in UTM could only be used for the maxi-mum l = ±3.5◦ from the initial longitude chosen in the 19th centurydue to the lack of computational techniques. However, with thedevelopment of mathematical computer software for numericalcomputing (MATLAB, Maxima, Mathematica, Maple, etc.), new so-lutions (Bermejo-Solera and Otero, 2009; Bowring, 1990, 1993a,b;Deakin et al., 2010; Engsager and Poder, 2007; Grafarend, 1995; Guoet al., 2020; Ingwersen, 1996; Karney, 2011; Klotz, 1993; Lee, 1962,1963; Mittermayer, 1993; Thompson, 1975; Turiño, 2004, 2008)have been developed for l > ±3.5◦ by increasing the number of coef-ficients in UTM. The coefficients used in the calculations are pre-sented ready to the user. Mittermayer’s method has been preferredin this study as it provides ease of calculation. The correlations inthis method are given below:
xmit = G90

[
q + A(q, l)] (1)

ymit = G90
[

l + B(q, l)] (2)
A
(

q, l
) + iB

(
q, l
) = n=9∑

k=0
bk(q + il)k (3)

n = n – 12 , n = 19 (4)
q = q

(
q, l
) = 2

π
arctan( sinh qcos l

) (5)
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(
q, l
) = 2

π
arctanh( sin lcosh q

) (6)
where G90 symbolises the meridian arc length between 0◦ and 90◦

latitudes. Meridian convergence and differential scale factor used indetermining distortions are calculated with the help of the followingequations:
γ = γ

(
q, l
) = arctan (1 + C) tan l tanh q – D

D tan l tanh q + (1 + C) (7)
m = m

(
q, l
) = EG90

N cos B

√(1 + C)2 + D2 (8)
E = 2

π

cos l cosh q
cosh2 q – sin2 l

(9)

C
(

q, l
) + iD

(
q, l
) = n=9∑

k=0
(2bk + 1)(q + il)2k (10)

The bk coefficients in the Equation (3) and (10), are given inTable 1, in the range of 0–9. The geodetic boundaries of convergenceof distortion and meridional in Turkey obtained using this methodare shown in Figure 2.

2.4 Lambert conformal conic projection

J. H. Lambert developed a single and double standard parallel conicalprojection for both sphere and ellipsoid in the 17th century. Doublestandard parallel (B1; B2) LCC2 projection is preferred to work with asingle coordinate system in the entire country in order to reduce thedistortions that occur from the selected B0 towards north and southin the x-axis direction. Projection coordinate data are calculatedwith the help of the following equations:
xlcc2 = R0 – R cos l′ (11)
ylcc2 = R sin l′ (12)
l′ = lδ (13)
l′ = δ(L – L0) (14)
R = R0e[–δ(q–q0)] (15)
R0 = N1 cos B1

δ
e[δ(q1–q0)] = N2 cos B2

δ
e[δ(q2–q0)] (16)

δ = ln (N1 cos B1) – ln (N2 cos B2)
q2 – q1 (17)

The meridian convergence and differential scale factor usedin determining the distortions are calculated with the help of thefollowing equations (Bugayevskiy and Snyder, 1995; Grossmann,1976; Hooijberg, 2012; Thomas, 1952; Yang et al., 1999):
γ = l′ = lδ (18)

m = N1 cos B1
N cos B e[–δ(q–q1)] = N2 cos B2

N cos B e[–δ(q–q2)] (19)
The selection of standard parallels varies according to the shapeand size of the study area to be projected. Therefore, the developedequations are as follows:

B1 = Bs + Bn – Bs
k

, B2 = Bn + Bn – Bs
k

(20)
where Bs and Bn symbolise the southern and northern latitudeboundaries of the study area respectively. Also, k is a coefficientthat changes according to the shape of the region. If the region isrectangular, k = 5; if it is a circle, k = 4; and if it is close to a rhom-bus, k = 3 (Bugayevskiy and Snyder, 1995). Standard parallels B1 =37◦30′N; B2 = 40◦30′N and k = 5 are taken for Turkey. Calculateddistortions and meridian convergence are shown in Figure 3.
2.5 Composite projection (CP)

The CP transcribes the map’s geometry to scale, to the map’s height-to-width ratio and to the central latitude of the shown area by replac-ing projections and adjusting their parameters. The CP indicatesthe entire globe including poles; it portrays continents or largercountries with less distortion and it can morph to the web Mercatorprojection for maps displaying small areas. By mixing differentprojections in order to reduce the deformation in scaled maps, ap-plications have been developed for small-scale map applications(Jenny, 2012; Jenny and Šavrič, 2018; Šavrič and Jenny, 2014) as wellas large- and medium-scale maps.CPs (Gojamanov and Ismayilov, 2019; Huryeu and Padshyvalau,2007, 2008; Padshyvalau et al., 2005; Pędzich, 2005) including La-grange polyconic projection (Bugayevskiy and Snyder, 1995; Yanget al., 1999) and Chebyshev–Grave criteria (Milnor, 1969; Nestorov,1997) are defined. CP is a type of projection that minimises dis-tortions that increase in all directions as it moves away from theselected coordinate origin and aims to provide users with formula
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Figure 2. Distortion sizes for Mittermayer method: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1◦; (c) thearc to chord (T – t) distortion, contour intervals 0.2◦; (d) the distance (S – s) distortion, contour intervals 75 cm.

and calculation convenience. Basic formulas for CP are given below:
xcp = k1x1 + k2x2 (21)
ycp = k1y1 + k2y2 (22)

where (x1,y1) and (x2,y2) values are the GK and LCC2 projection co-ordinates used in this study, respectively. Considering the physicalsize of Turkey’s geodetic boundaries, it is seen that there are dis-tortions in both north–south and east–west directions. These twoprojection methods have been chosen to reduce these distortionsin both directions. k1 and k2 are mixed projection coefficients andcalculated using the following equation:
dk = n [x1y1] – [y1] [x1]

n
[

x21 ] – [x21 ] (23)
k1 = –

∣∣∣∣∣ d2
k1 + d2

k

∣∣∣∣∣ or k1 =
∣∣∣∣∣ 1 + d2

k
d2

k

∣∣∣∣∣ (24)
k2 = 1 – k1 (25)

The value of n in the Equation (23) symbolises the number ofpoints (585 points) calculated in practice. Coordinates of the secondprojection can also be used in the calculation of dk. In this study,the dk coefficients have been tested in both projections and LCC2has been preferred because it reduces distortions. In order to pre-fer CP, the projection equations (x1,y1) and (x2,y2) in Equation (6)should be calculated. For this, isometric coordinate parameter pairscan be written in terms of complex forms in conform projections(Gojamanov and Ismayilov, 2019; Huryeu and Padshyvalau, 2007,2008; Padshyvalau et al., 2005; Pędzich, 2005):
xj + iyj = F

(
q + il

) , j = 1, 2 (26)
∆xj + iyj = 10∑

k=1
ak(∆q + il)k (27)

∆xj = xj – x0, x0 = G0 (28)
∆q = q – q0, l = L – L0 (29)

The following equations are used to avoid calculation overheadin complex functions:
xj = x0 + 10∑

k=1
akPk; yj = 10∑

k=1
akQk, j = 1, 2 (30)

Pj = Pj–1P1 – Qj–1Q1, P1 = q – q0, P0 = 1 (31)
Qj = Pj–1Q1 – Qj–1P1, Q1 = L – L0, Q0 = 0 (32)

Since the GK mapping accepts the equator as the beginning ofthe x-axis, the G0 value must be calculated. On the other hand, inthe LCC2 description, since the x-axis is accepted as the beginningof the B0 latitude, it is not necessary to calculate the G0 value (G0= 0). The ak coefficients are obtained by using the Taylor seriesat latitude B0 selected by taking l = 0 in accordance with the con-formal description conditions of the analytical function derivative(Grossmann, 1976):
a1 = dx

dq
= (dG

dq

)
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(37)

The values of δ and R0 in the equations given above for LCC2are calculated using the Equations (11–17). The effect of the ak co-efficients on the (x, y) coordinates falls below 1 mm after the 10thiteration, considering the geographical borders of Turkey. Thesecoefficients are difficult to derive and calculate manually. MATLABsoftware has been used for this process. These coefficients havebeen calculated using a number of functions (syms, diff and com-
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Figure 3. Distortion sizes for LCC2: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1◦; (c) the arc to chord(T – t) distortion, contour intervals 0.2′′; (d) the distance (S – s) distortion, contour intervals 40 cm.
Table 2. ak coefficients in metres

GK LCC2 CP

k Hayford
(ED50 Datum)

GRS80
(ITRF Datum)

Hayford
(ED50 Datum)

GRS80
(ITRF Datum)

Hayford
(ED50 Datum)

GRS80
(ITRF Datum)

1 4963550.54140 4963327.33863 4961856.51702 4961633.36122 4961858.21105 4961635.05520
2 -1561831.78385 -1561761.55083 -1561480.06295 -1561409.82430 -1561480.41467 -1561410.17603
3 -174039.01315 -174022.53500 327595.12206 327580.38357 327093.48792 327078.78065
4 344383.18219 344355.40058 -51546.55823 -51544.23875 -51150.62849 -51148.33911
5 -97650.60029 -97639.86801 6488.61350 6488.32148 6384.47429 6384.19329
6 -37371.53049 -37368.38135 -680.64850 -680.61786 -717.33938 -717.30563
7 39232.35134 39,226.49432 61.19939 61.19663 100.37054 100.36193
8 -7671.34989 -7668.97005 -4.81481 -4.81460 -12.48135 -12.47875
9 -6850.12639 -6849.30900 0.33671 0.33670 -6.51375 -6.51295
10 5154.82567 5153.41787 -0.02119 -0.02119 5.13365 5.13225

plex) available in the MATLAB library. The ak coefficients for CP arecalculated by using Equations (26-29) or Equations (30-32) insteadof Equations (21) and (22) (Gojamanov and Ismayilov, 2019; Huryeuand Padshyvalau, 2007, 2008; Padshyvalau et al., 2005; Pędzich,2005):
aCP

j = k1aGK
j + k2aLCC2

j (38)
Thus, the ease of calculation for CP is presented to the userswith the coefficients in Table 2.The meridian convergence and differential scale factor used indetermination of the distortions are calculated as follows.

m =
√

K21 + K22
N cos B , γ = arctan K1

K2 (39)
K1 = – 10∑

j=1
jaCP

j Q(j–1), K2 = 10∑
j=1

jaCP
j P(j–1) (40)

The distortions and meridian convergence calculated are shownin Figure 4.

2.6 Conical double projection from ellipsoid to sphere
and sphere to plane (DP)

The conformal projection of ellipsoid to sphere is fixed and there aremany algorithms for conformal projection from sphere to plane. DPconsists of two stages: firstly, from the isometric coordinates in theellipsoid (q, l) to the isometric coordinates in the sphere (ω,∆λ),and then from the geodetic coordinates in the sphere (φ,λ) to theGaussian sphere (Grossmann, 1976).
ω + i∆λ = K1 (q + il

) + K2 (41)
K1 = √1 + e′2 cos4 B0 (42)
K2 = arctanh( 1

K1 sin B0
) – K1q0 (43)

ω = K1q + K2 (44)
∆λ = λ – λ0 = K1l, λ0 = L0 (45)
φ = arcsin(tanh(ω)) (46)
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Figure 4. Distortion sizes for CP: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1◦; (c) the arc to chord (T – t)distortion, contour intervals 0.2′′; (d) the distance (S – s) distortion, contour intervals 40 cm.

The double standard parallel projection equations from sphereto plane are as follows:
xdp = R0 – R cos(δ(λ – λ0)) (47)
ydp = R0 – R sin(δ(λ – λ0)) (48)

R = R0e[–δ(ω–ω0)] (49)
R0 = R1 cosφ1

δ
e[δ(ω1–ω0)] = R2 cosφ2

δ
e[δ(ω2–ω0)] (50)

δ = ln(R1 cosφ1) – ln(R2 cosφ2)
ω2 – ω1 (51)

R1 = c/(1 + e′2 cos2 B1); R2 = c/(1 + e′2 cos2 B2) (52)
The meridian convergence and differential scale factor used indetermination of distortions are calculated as follows (Bugayevskiyand Snyder, 1995; Grossmann, 1976):

γ = δ(λ – λ0) (53)
m = R1 cosφ1

R cosφ e[–δ(ω–ω1)] = R2 cosφ2
R cosφ e[–δ(ω–ω2)] (54)

The calculated distortions and meridian convergence are shownin Figure 5.
2.7 Examination of the projections and a new proposal

for Turkey

Considering the distortions in Figures 2–5, it is seen that the dis-tortion in the Mittermayer method increases as it moves away fromthe starting meridian in the east–west direction compared to othermethods. This means distortion of the size of the map in the wholecountry in large- and medium-sized maps. When the deforma-tions in the other three methods are examined, it is seen that theedge distortion of CP gives better results between standard parallelscompared to LCC2 and DP. In this study, for the first time in Turkey,CPU, GK and LCC2 depictions are used together. The combination ofGK and LCC2 equations for the CP depiction equations can be seenas an additional computational burden on users. However, consider-

ing the geographical borders of Turkey, the coefficients to be usedin the solution of Equations (21, 22) and (26–29) are calculatedand presented to the users in Tables 2 and 3. Thus, both ease ofcalculation is provided to the users and the edge distortion betweenthe latitudes (37◦30′-40◦30′) falls below 20 cm. The coefficientsgiven in Tables 3 and 4 for CP are valid only for B0 = 39◦. For theuse of other countries, it is necessary to calculate a new averagelatitude value of the study area. Calculations for some points for CPare given in Table 5.
2.8 Calculation of geodetic coordinates from CP inverse

projection coordinates

It is necessary to know the geodetic coordinates for transformationfrom the map coordinates of the newly defined system to the oldsystem and for transition to geocentric coordinates in the GlobalNavigation Sattellite System (GNSS) application. This is done by in-verse transformation from either GK or LCC2 projection coordinates(Equations (41–44)):
∆q + il = 10∑

k=1
bk(∆x + iy)k (55)

or
q = q0 + 10∑

k=1
bkP′

k, L = L0 + 10∑
k=1

bkQ′
k (56)

P′
j = P′

j–1P′1 – Q′
j–1Q′1, P′1 = ∆x, P′0 = 1 (57)

Q′
j = P′

j–1Q′1 – Q′
j–1P′1, Q′1 = y, Q′0 = 0 (58)

For the value of B0 = 39◦, the bkcoefficients are calculated usingthe formulas given below:
b1 = ( dq

dG

)
0 = 1

N cos B
} GK (59)

b1 = ( dq
dG

)
0 = 1

N1 cos B1eδ(q–q0)
} LCC2 (60)
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Figure 5. Distortion sizes for double projection: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1◦; (c) the arc tochord (T – t) distortion, contour intervals 0.2"; (d) the distance (S – s) distortion, contour intervals 40 cm.

or
bn = 1

n! = 1
δnR0e–δ(q–q0) , q = q0

} LCC2 (61)
b2 = 12

(
d2q
dG2

)
0

= 12
( d

dB
dq
dG

dB
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)
0

(63)
All calculated bk coefficients are given in Table 3. Calculationof the values of δ and R0 used in the above equations are given inEquations (11–17). The following equations are used for transitionfrom isometric latitude to geodetic latitude given in Equations (55–58) (Kaya, 1994):

B = χ + 1/2 sin 2χ[e2 + e4(cos2 χ – 1
6 sin2 χ

)
+

+ e6(cos4 χ – 5
6 sin2 χ cos2 χ

+ 1
30 sin4 χ

)
+

+e8(cos6χ–2 sin2χ cos4χ+ 49
120 sin4χ cos4χ + 31

252 sin2χ
)]

(64)

χ = arcsin(tanh q) (65)
Also, bkcoefficients can be obtained by using Equation (66):

bCP
j = k1bGK

j + k2bLCC2
j (66)

The reverse conversion process is performed using Equa-tions (55–58) and (66). This process is more practical for users.The coefficients calculated from Equations (59–63) and (66) areshown in Table 3.
2.9 Correction formulas of CP

In engineering projects where distance and direction are measured,it is necessary to reduce lengths and direction. Since map coordi-

nates are used in the projects, giving the reduction formulas overthese coordinates provides ease of calculation for the users. The re-duction formulas commonly used for conformal descriptions (Dra-heim, 1953) can also be used for CP:
(T – t)map = t1x1∆y + t2∆x∆y + t3x1y1∆x + t4x21 ∆y+

+ t5y21 ∆y + t6x21 y1∆x + t7y31∆x + t8x1y21 ∆y
(67)

where:
t1 = 3t2; t2 = – 1 + η206N20 ; t3 = – t0

(1 + η20
)

2N30
;

t4 = – t0
(1 – 3η20 – 4η40

)
4N30

; t5 = – t32 ;
t6 = 40 + 108η20 + 63η40 – 3t2036N40

; t7 = –10η20 – 7η40 + 3t2012N40
;

t8 = –t6

(68)

(S – s)map = s
(

s1 + s2x21 + s3x1∆x + s4x31 +
+ s5x1y21 + s6x41 + s7x21 y21 + s8y41

) (69)

where:
s1 = N0 cos B0

bCP1
– 1; s2 = s3 = t1;

s4 = – t0
(1 – 3η20 – 4η40

)
6N30

; s5 = –t3;
s6 = 5 + 20η20 + 10η40 – 3t2024N40

; s7 = –13η20 – 8η40 + 9t204N40
;

s8 = 10η20 + 10η40 – 3t2024N40

(70)
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Table 3. bk coefficients
GK LCC2 CP

k Hayford
(ED50 Datum)

GRS80
(ITRF Datum)

Hayford
(ED50 Datum)

GRS80
(ITRF Datum)

Hayford
(ED50 Datum)

GRS80
(ITRF Datum)

1 2.01468684898033e-07 2.01477745023166e-07 2.01537468197565e-07 2.01546532602613e-07 2.01537399414265e-07 2.01546463815034e-07
2 1.27719412250272e-14 1.27730899691869e-14 1.27821479148768e-14 1.27832976273027e-14 1.27821377081870e-14 1.27832874196446e-14
3 1.90606580617672e-21 1.90630871057434e-21 1.08091269101801e-21 1.08105852690209e-21 1.08173784413317e-21 1.08188377708576e-21
4 2.33217785338216e-28 2.33259302576196e-28 1.02832386626856e-28 1.02850885526054e-28 1.02962772025567e-28 1.02981293943104e-28
5 3.40288110341843e-35 3.40362666718644e-35 1.04351317940802e-35 1.04374783445450e-35 1.04587254733203e-35 1.04610771328723e-35
6 4.92399104670312e-42 4.92529126527513e-42 1.10304880523434e-42 1.10334646159951e-42 1.10686974747581e-42 1.10716840640319e-42
7 7.46687045549524e-49 7.46916636213681e-49 1.19929486733841e-49 1.19967244054757e-49 1.20556244292657e-49 1.20594193446916e-49
8 1.14705437919241e-55 1.14745779438984e-55 1.33110423181849e-56 1.33158317899727e-56 1.34124367137860e-56 1.34172617376217e-56
9 1.79545605447638e-62 1.79616622523578e-62 1.50085099606334e-63 1.50145853535200e-63 1.51730470561204e-63 1.51791873906901e-63
10 2.84208801069137e-69 2.84333725613141e-69 1.71339747802719e-70 1.71416813538263e-70 1.74010496065608e-70 1.74088733980856e-70

Table 4. Coefficients for correction formulas
k tk sk

1 -1.230817046856762e-14 3.410737419053955e-04
2 -4.102723489522539e-15 -1.230817046856762e-14
3 -1.560602822242498e-21 -1.230817046856762e-14
4 -7.675969852812854e-22 -5.117313235208569e-22
5 7.803014111212491e-22 1.560602822242498e-21
6 -2.882524686831016e-28 7.799576438254665e-29
7 9.649191199496467e-29 2.876383454639922e-28
8 2.882524686831016e-28 -4.824471121337579e-29

The ∆x(x2 – x1) and ∆y(y2 – y1) reductions are the differencebetween the map coordinate values of the edge to be calculated. Inorder to provide ease of calculation to the users, tk and sk coeffi-cients in Equations (66–68) are calculated in B0 = 39◦ latitude andITRF96 datum are given in Table 4. These coefficient values thatcan be used for up to 2 km in length can be measured in the land ofTurkey’s geodetic boundaries.These differences Tt = (T – t) – (T – t)map and Ss = (S – s) –(S – s)map are calculated on the sides of 1 and 2 km and are givenin Figure 6. It is observed that the edge distortion (S – s) in Equa-tions (66–68) is achieved with an accuracy of 1 cm for 1 km and lessthan 2 cm for 2 km. In addition, the map distortion (T – t) in Equa-tions (66–68) provides an accuracy of less than 0.003′′ for 1 km and0.006′′ for 2 km. In this context, Equations (66–68) are sufficientfor the location accuracy of the angle and distance measurementsmade in the detail acquisition of projects using large-scale mapsand in the application to the terrain.
2.10 Choice of scale correction factor (m0) and false ori-

gin for Turkey

Since large-scale maps (1:1000–1:10,000) cover small areas, m0 istaken as 1 for the whole country (Figure 4a). Thus, in engineeringprojects that require detailed measurement from the field and appli-cation to the field, the land and the map remain the same in 1:1 scale.This provides the users with the ease of completing the applicationwithout any additional transformation process in the application ofthe data produced from large-scale maps to the terrain. However,this is not the case with medium-scale maps (1:25,000–1:250,000).In these maps, due to the area they occupy, distortion increasesin the near regions of the depiction centre and as they move awayfrom the depiction centre. For the CP representation, these mapsalso increase as distortions increase from the chosen initial latitudeto the north and south, and particularly at the system edges. It maybe possible to keep this growth within a certain boundary by pre-serving the conditions of representation, and especially to reduceit within the country borders. So, m could be slightly reduced for

the whole country. For this, m0 must be equal to 1 at xmax/2. Thus,in the initial latitude, m0 will be slightly smaller than 1, but in theborder latitudes (m – 1), the difference will be halved. xmax/2 cor-responds to the latitude B = 40.50◦ and m0 = 1 for CP. The m0valuecan be chosen as 0.9995, the average value between B = 40.5◦ and
Bmax= 42◦ in CP (Figure 7).In order to not work with negative coordinates in scaled maps, atthe beginning of the coordinate of the description, negative x valuessouth of latitude B0 = 39◦ and negative y values west of longitude
L0 = 35.5◦ should be positive. For this, a fixed value (false) mustbe specified to add to all projection coordinates (xcp, ycp). Negativevalues of CP coordinates are xmax = –388 km and ymax = –861 kmin Turkey (Table 5). Therefore, false northing = 500,000 m andfalse easting = 1,000,000 m values are determined for positive co-ordinates. Thus, scale maps for CP (scale map) or sheet (sheet)coordinates can be calculated in Turkey:

Northing (N) = m0xCP + 500, 000 (71)
Easting (E) = m0yCP + 1, 000, 000 (72)

In these equations, m0 value is taken as 1 for large-scale mapsand 0.9995 for medium- and small-scale maps.The meanings of the parameters symbolised in Table 5 are ex-plained in Section 2.2. This table has been produced by taking intoaccount the latitude and longitude limit values of Turkey. Distortionvalues have been calculated in CP as a result of calculations madeusing MATLAB software.

3 Results and Discussion

In this study, projections that can be used outside the UTM sys-tem with the beginning of seven meridian zones are examined inTurkey. As it is known in the UTM system, zone transformationis performed in projects in two zones, and transition to a differ-ent projection is performed for projects falling into more than twozones. This leads to an increase in working load and working errorscaused by users. In this context, Mittermayer with increased merid-ian zone width, CP, double standard parallel LCC2 and ellipsoid tosphere, spherical to plane conformable DP, which are suitable forthe geodetic location and shape of our country, except UTM, havebeen examined in detail.In this study, the applicability of CP, which is used for small-scale maps among the discussed projections, for large- andmedium-scale maps has been investigated for the first time. Also,for the first time in CP, GK and LCC2 projections have been mixedin order to reduce distortions in all directions. The distortions ofthe four projection methods have been calculated with the testpoints determined in the 0.5◦ × 0.5◦ geodetic grid covering thegeodetic borders of Turkey. According to the results, it has beenobserved that CP especially has less length distortion compared to
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Figure 6. Correction values based on correction formulas for accuracy analysis in CP: (a) Ss difference for 1 km, counter interval 2 mm; (b) Ss differencefor 2 km, counter interval 2 mm; (c) Tt difference for 1 km, contour intervals 0.001′′; (d) Tt difference for 2 km, contour intervals 0.001′′.
Table 5. Numerical values for CP (for 1 km) (k1 = 0.001, k2 = 1 – k1)

B [◦] L [◦] XCP[m] YCP[m] M m0 = 1
m γ [◦] (T – t)["] (T-t)map Tt[m] (S – s)[m] (S-s)map Ss [m]

35.5 26.0 -343547.200 -861653.097 1.001502 0.998500 -5.97880628 0.6806 0.6805 0.0000 -1.499 -1.489 -0.010
36.0 26.5 -292879.879 -810972.322 1.001018 0.998983 -5.66419331 0.5850 0.5852 -0.0002 -1.015 -1.005 -0.010
36.5 27.0 -241925.869 -760876.119 1.000607 0.999394 -5.34957328 0.4890 0.4893 -0.0003 -0.604 -0.595 -0.009
37.0 27.5 -190685.986 -711365.636 1.000269 0.999731 -5.03494624 0.3924 0.3927 -0.0003 -0.267 -0.259 -0.008
37.5 28.0 -139161.028 -662442.072 1.000005 0.999995 -4.72031223 0.2952 0.2955 -0.0003 -0.004 0.003 -0.007
38.0 28.5 -87351.773 -614106.679 0.999816 1.000184 -4.40567130 0.1974 0.1976 -0.0002 0.185 0.191 -0.006
38.5 29.0 -35258.976 -566360.762 0.999702 1.000298 -4.09102350 0.0989 0.0990 -0.0001 0.299 0.303 -0.005
39.0 29.5 17116.629 -519205.677 0.999662 1.000338 -3.77636888 -0.0002 -0.0002 0.0000 0.338 0.341 -0.003
39.5 30.0 69774.333 -472642.839 0.999699 1.000301 -3.46170748 -0.1000 -0.1002 0.0002 0.301 0.303 -0.002
40.0 30.5 122713.451 -426673.712 0.999812 1.000188 -3.14703936 -0.2006 -0.2009 0.0003 0.187 0.188 -0.001
40.5 31.0 175933.327 -381299.820 1.000002 0.999998 -2.83236456 -0.3019 -0.3024 0.0005 -0.003 -0.004 0.001
41.0 31.5 229433.329 -336522.741 1.000269 0.999731 -2.51768313 -0.4040 -0.4047 0.0007 -0.271 -0.273 0.002
42.0 32.0 338751.594 -290207.607 1.001040 0.998961 -2.20301786 -0.6108 -0.6117 0.0009 -1.043 -1.047 0.004
42.5 32.5 392851.626 -246933.182 1.001545 0.998457 -1.88831991 -0.7155 -0.7166 0.0011 -1.548 -1.553 0.005
35.5 33.0 -385425.899 -227133.656 1.001494 0.998508 -1.57336268 0.6816 0.6812 0.0004 -1.490 -1.484 -0.006
36.0 33.5 -331015.720 -180494.967 1.001010 0.998991 -1.25870410 0.5861 0.5855 0.0005 -1.007 -1.002 -0.005
36.5 34.0 -276364.523 -134461.147 1.000600 0.999401 -0.94403851 0.4900 0.4894 0.0007 -0.597 -0.593 -0.004
37.0 34.5 -221473.213 -89033.279 1.000263 0.999737 -0.62936594 0.3934 0.3926 0.0008 -0.261 -0.258 -0.003
38.0 35.0 -110853.214 -43907.730 0.999811 1.000189 -0.31468987 0.1983 0.1974 0.0009 0.189 0.191 -0.002
39.0 35.5 0.000 0.000 0.999659 1.000341 0.00000000 0.0007 -0.0004 0.0011 0.341 0.341 0.000
39.5 36.0 55609.954 42993.428 0.999696 1.000304 0.31470008 -0.0992 -0.1004 0.0012 0.303 0.303 0.001
40.0 36.5 111461.668 85375.887 0.999810 1.000190 0.62940691 -0.1997 -0.2010 0.0013 0.189 0.188 0.002
40.5 37.0 167554.386 127145.900 1.000000 1.000000 0.94412043 -0.3010 -0.3024 0.0014 -0.002 -0.004 0.002
41.0 37.5 223887.372 168301.932 1.000268 0.999732 1.25884059 -0.4031 -0.4047 0.0015 -0.270 -0.273 0.003
41.5 38.0 280459.918 208842.389 1.000615 0.999386 1.57356734 -0.5061 -0.5077 0.0016 -0.617 -0.621 0.004
42.0 38.5 337271.342 248765.618 1.001040 0.998961 1.88830062 -0.6099 -0.6116 0.0018 -1.043 -1.047 0.004
42.5 39.0 394320.989 288069.904 1.001545 0.998457 2.20304037 -0.7145 -0.7164 0.0019 -1.549 -1.554 0.005
35.5 39.5 -380561.376 363342.720 1.001495 0.998507 2.51738164 0.6827 0.6812 0.0015 -1.491 -1.484 -0.007
36.0 40.5 -320609.223 451047.199 1.001012 0.998989 3.14676397 0.5872 0.5856 0.0016 -1.009 -1.002 -0.007
36.5 41.0 -262583.287 492747.097 1.000603 0.999398 3.46148011 0.4912 0.4895 0.0016 -0.600 -0.593 -0.007
37.0 41.5 -204364.419 533824.364 1.000266 0.999734 3.77620340 0.3946 0.3929 0.0017 -0.264 -0.258 -0.006
37.5 42.0 -145953.593 574277.932 1.000004 0.999996 4.09093380 0.2974 0.2956 0.0018 -0.003 0.004 -0.006
38.0 42.5 -87351.773 614106.679 0.999816 1.000184 4.40567130 0.1996 0.1977 0.0019 0.185 0.191 -0.006
38.5 43.0 -28559.910 653309.428 0.999703 1.000297 4.72041584 0.1011 0.0991 0.0020 0.298 0.304 -0.006
39.0 43.5 30421.060 691884.946 0.999665 1.000335 5.03516738 0.0020 -0.0002 0.0023 0.335 0.341 -0.006
39.5 44.0 89590.217 729831.941 0.999703 1.000297 5.34992587 -0.0978 -0.1003 0.0025 0.297 0.303 -0.006
40.0 44.5 148946.655 767149.065 0.999817 1.000183 5.66469127 -0.1983 -0.2012 0.0029 0.182 0.189 -0.007
42.5 45.0 429557.127 780679.388 1.001552 0.998451 5.97971209 -0.7135 -0.7181 0.0046 -1.555 -1.551 -0.004
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Figure 7. Scale correction factor for CP

LCC2. Thus, it is proven that a projection may also use CP and LCC2,except for Turkey.Some definitions need to be made in order to be able to use CP incountry mapping system, medium- and large-scale maps and en-gineering projects, which include detail and application processes.These definitions are the transformation of geographic and projec-tion coordinates, direction and length correction formulas, scalecorrection factor (m0), false easting and false northing, respectively.Also, it is defined as the coefficient in terms of providing conve-nience to users in this study in Turkey. It is sufficient to calculatethese coefficients once according to the initial latitude (B0) and theyare valid everywhere within the geodetic boundaries of the country.These coefficients are calculated in ITRF96 and ED50 datum andgiven to users in this study.Geodetic–projection coordinate transformation in CP is calcu-lated with the help of Equations (26–29, 38). The coefficients aregiven in Table 2. In addition, the Geodetic–projection coordinatemapping is performed using Equations (55–58, 66). Coefficientsare given in Table 3. Direction and length corrections are calculatedwith Equations (67–69) and the coefficients are given in Table 4.Equations (67–69) are sufficient to determine the position accuracyof the angle and distance measurements made with the total stationin places where GNSS cannot be measured in the detail acquisitionand application of the projects produced on large-scale maps.

4 Conclusions

As is the case in Turkey, slice transformation should be performedfor projects in two slices in the UTM system and a different projec-tion system should be used for projects with more than two slices.This situation causes the working load to increase and user-basederrors to occur. In this study, projections that can be used outsideof UTM are examined in Turkey. Mittermayer, mixed projection(CP), double standard parallel LCC2 and conformal DP to ellipsoidalsphere and from sphere to plane, suitable for Turkey’s geographicallocation and shape, have been studied in detail.According to the results obtained, map projection CP with theleast distortion values in both east–west and north–south direc-tions has been selected. With the CP selection, a single coordinatesystem has been determined for medium- and large-scale maps.Projection correction formulas, scale factor and false origin havebeen calculated for map coordinates in CP. These distortions areobtained with a difference of less than 1 cm for 1 km long sides andless than 0.003′′ for the azimuth value of this side, when the cor-rection formulas are used. In addition, in this study, equations havebeen produced in the form of coefficients in order to provide conve-nience to the users. These coefficients are calculated separately forITRF and ED50 datums according to the initial latitude (B0) and it issufficient to calculate once. These coefficients are valid everywherewithin the geographical boundaries.
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