Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The chelating ion exchanger Diaion CR20 was applied for removal of chromium(VI) ions in the pH range from 1.5 to 10 and in the presence of 1 M H2SO4. The speciation analysis was used to predict the reduction process. Reduction of chromium(VI) to chromium (III) was observed during the chromium(VI) ions sorption. The kinetic parameters for the pseudo-first-order and pseudo-second-order, Elovich and intraparticle diffusion models were calculated. The most common three isotherm models: Freundlich, Langmuir and Dubinin-Radushkevich were used to describe chromium(VI) uptake. It was proved that the polyamine groups present in selected ion exchanger are able to sorb both chromium(VI) and (III) ions. The maximal sorption capacity towards chromium(VI) ions was estimated at pH 1.5 – 169.49 mg Cr(VI)/g and 159.31 mg Cr(VI)/g in 1 M H2SO4. Both static and column methods were used in the investigations.
Słowa kluczowe
Rocznik
Tom
Strony
1382--1393
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr., wz.
Twórcy
autor
- Maria Curie-SklodowskaUniversity, Faculty of Chemistry, Department of Inorganic Chemistry, M. Curie-Sklodowskiej Sq. 2, 20-031 Lublin, Poland
Bibliografia
- ARAIN, M. B., ALI, I., YILMAZ, E., SOYLAK, M.,2018. Nanomaterial’s based chromium speciation in environmental samples: A review. TrAC -Trend. Anal. Chem.103, 44–55.
- GHASEMI, N., TAMRI, P., KHADEMI, A., NEZHAD, N. S.,ALWI, S .R. W.,2013. Linearized equations of pseudo second-order kinetic for the adsorption of Pb(II) on pistacia atlantica shells. IERI Procedia 5, 232–237.
- HO, Y. S., McKAY, G.,1998. Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf. Environ. 76, 183–191.
- HO, Y. S., McKAY, G., 2002. Application of kinetic models to the sorption of copper(II) on to peat. Adsorpt.Sci. Technol. 20, 797–815.
- LIU, Y., SOHI, S. P., LIU, S., GUAN, J., ZHOU, J., CHEN, J., 2019. Adsorption and reductive degradation of Cr(VI) and TCE by a simply synthesized zero valent iron magnetic biochar. J. Environ. Manage. 235, 276–281.
- NARIN, I., SOYLAK, M., KAYAKIRILMAZ, K., ELCI, L., DOGAN, M., 2002. Speciation of Cr(III) and Cr(VI) in tannery wastewater and sediment samples on Ambersorb 563 resin. Anal. Lett. 35, 1437–1452.
- NEAGU, V., 2009. Removal of Cr(VI) onto functionalized pyridine copolymer with amide groups. J. Hazard. Mater. 171, 410–416.
- NEAGU, V., MIKHALOVSKY, S., 2010. Removal of hexavalent chromium by new quaternized crosslinked poly(4-vinylpyridines). J. Hazard. Mater. 183, 533–540.
- NI, X. L., JIN, C. C., JIANG, X. K., TAKIMOTO, M., RAHMAN, S., ZENG, X., YAMATO, T., 2013. Tri-substituted hexahomotrioxacalix[3]arene derivatives bearing imidazole units: Synthesis and extraction properties for cations and chromateanions. Org. Biomol.Chem.11, 5435–5442.
- OH, J. K., LEE, H. Y., KIM, S. G., 2000. Solvent extraction of chromium from dilute aqueous solution. Geosystem Eng. 3, 49–52.
- PRADHAN, D., SUKLA, L. B., SAWYER, M.,RAHMAN, P. K. S. M., 2017. Recent bioreduction of hexavalent chromium in wastewater treatment: A review. J. Ind. Eng. Chem. 55, 1–20.
- RAJASIMMAN, M., SANGEETHA, R., 2009. Optimization of process parameters for the extraction of chromium (VI) by emulsion liquid membrane using response surface methodology. J. Hazard. Mater. 168, 291–297.
- WANG, Y., SU, H., GU, Y., SONG, X., ZHAO, J., 2017. Carcinogenicity of chromium and chemoprevention: A brief update. OncoTargets Ther. 10, 4065–4079.
- WÓJCIK, G., HUBICKI, Z., 2016. Sorption and reduction of chromium(VI) ions on Purolite A 830. Sep. Sci. Technol. 51, 2539–2546.
- WÓJCIK, G., HUBICKI, Z., 2018. Investigations of chromium(VI) ion sorption and reduction on strongly basic anion exchanger. Sep. Sci. Technol. 53, 1088–1096.
- WÓJCIK, G., HUBICKI, Z., RUSEK, P., 2011. Badania procesu sorpcji jonów Cr(VI) na anionicie Amberlit IRA 910. Przem.Chem. 12, 2153–2156.
- WÓJCIK, G., HUBICKI, Z., RUSEK, P., 2013. Badania procesu sorpcji jonów Cr(VI) na anionicie Varion AP. Przem. Chem. 92, 82–85.
- WÓJCIK, G., HUBICKI, Z., RYCZKOWSKI, J.,2009. Investigations of chromium(III) and (VI) ions sorption on SIR by using photoacoustic and DRS methods. Acta Phys. Pol. A 116, 432–434.
- WÓJCIK, G., NEAGU, V., BUNIA, I.,2011. Sorption studies of chromium(VI) onto new ion exchanger with tertiary amine, quaternary ammonium and ketone groups. J. Hazard. Mater. 190, 544–552.
- XING, Y., CHEN, X., WANG, D., 2007. Electrically regenerated ion exchange for removal and recovery of Cr(VI) from wastewater. Environ. Sci. Technol. 41, 1439–1443.
- XU, X., YEKEEN, T. A., LIU, J., ZHUANG, B., LI, W., HUO, X., 2015. Chromium exposure among children from an electronic waste recycling town of China. Environ. Sci. Pollut. R. 22, 1778–1785.
- XU, Y., CHEN, J., CHEN, R., YU, P., GUO, S., WANG, X., 2019. Adsorption and reduction of chromium(VI) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent. Water Res.160,148–157.
- ZHANG, Y., LI, M., LI, J., YANG, Y.,LIU, X., 2019. Surface modified leaves with high efficiency for the removal of aqueous Cr(VI). Appl. Sur. Sci. 484, 189–196.
- ZHOU, J., CHEN, H., THRING, R. W., AROCENA, J. M., 2019. Chemical pretreatment of rice straw biochar: effect on biochar properties and hexavalent adsorption. Int. J. Environ. Res.13, 91–105.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11a999e2-2b81-4169-8667-d7c4d7e23749