PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A 3D trabecular bone homogenization technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Bone is a hierarchical material that can be characterized from the microscale to macroscale. Multiscale models make it possible to study bone remodeling, inducing bone adaptation by using information of bone multiple scales. This work proposes a computationally efficient homogenization methodology useful for multiscale analysis. This technique is capable to define the homogenized microscale mechanical properties of the trabecular bone highly heterogeneous medium. Methods: In this work, a morphology-based fabric tensor and a set of anisotropic phenomenological laws for bone tissue was used, in order to define the bone micro-scale mechanical properties. To validate the developed methodology, several examples were performed in order to analyze its numerical behavior. Thus, trabecular bone and fabricated benchmarks patches (representing special cases of trabecular bone morphologies) were analyzed under compression. Results: The results show that the developed technique is robust and capable to provide a consistent material homogenization, indicating that the homogeneous models were capable to accurately reproduce the micro-scale patch mechanical behavior. Conclusions: The developed method has shown to be robust, computationally less demanding and enabling the authors to obtain close results when comparing the heterogeneous models with equivalent homogenized models. Therefore, it is capable to accurately predict the micro-scale patch mechanical behavior in a fraction of the time required by classic homogenization techniques.
Rocznik
Strony
139--152
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP Rua Dr. Roberto Frias, 400, 4200-465, Porto, Portugal
autor
  • Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
  • Department of Mechanical Engineering, School of Engineering, Polytechnic of Porto, Porto, Portugal
  • Institute of Biomedical Sciences Abel Salazar, Porto, Portugal
  • Muscular and Skeletal Pathology Research, Human Anatomy and Embryology Unit, Universitat de Barcelona, Barcelona, Spain
  • Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
  • Faculty of Engineering of University of Porto, Porto, Portugal
Bibliografia
  • [1] AGIĆ A., NIKOLIĆ V., MIJOVIĆ B., The cancellous bone multiscale morphology-elasticity relationship, Collegium Antropologicum, 2006, 30 (2), 409–414. http://www.ncbi.nlm.nih.gov/pubmed/16848160
  • [2] BELINHA J., Meshless Methods in Biomechanics, Vol. 16. V.E. Brimkov, R.P. Barneva (Eds.), Springer International Publishing; Cham 2014 (Lecture Notes in Computational Vision and Biomechanics), DOI: 10.1007/978-3-319-06400-0.
  • [3] BELINHA J., DINIS L.M.J.S.M.J.S., NATAL JORGE R.M.M., The analysis of the bone remodelling around femoral stems: A meshless approach, Mathematics and Computers in Simulation, 2016, 121, 64–94, http://www.sciencedirect. com/science/article/pii/S0378475415001895. DOI: 10.1016/j.matcom.2015.09.002.
  • [4] BELINHA J., JORGE R.M.N., DINIs L.M.J.S., A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic bone tissue material law, Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16 (11), 1170–1184, DOI: 10.1080/10255842.2012.654783.
  • [5] CAI X., PERALTA L., BRENNER R., IORI G., CASSEREAU D., RAUM K., LAUGIER P., GRIMAL Q., Anisotropic elastic properties of human cortical bone tissue inferred from inverse homogenization and resonant ultrasound spectroscopy, Materialia, 2020, 11, 100730. https://www.sciencedirect.com/science/article/pii/S2589152920301472. DOI: 10.1016/J.MTLA.2020.100730.
  • [6] CARTER D.R., FYHRIE D.P., WHALEN R.T., Trabecular bone density and loading history: Regulation of connective tissue biology by mechanical energy, Journal of Biomechanics, 1987, 20 (8), 785–794, DOI: 10.1016/0021-9290(87)90058-3.
  • [7] CARTER D.R., VAN DER MEULEN M.C., BEAUPRÉ G.S., Mechanical factors in bone growth and development, Bone, 1996, 18 (1 Suppl.), 5S–10S, DOI: 10.1016/8756-3282(95)00373-8.
  • [8] COWIN S.C., The relationship between the elasticity tensor and the fabric tensor, Mechanics of Materials, 1985, 4 (2), 137–147, DOI: 10.1016/0167-6636(85)90012-2.
  • [9] FITZGIBBON A.W., PILU M., FISHER R.B., Direct least squares fitting of ellipses, Proceedings of 13th International Conference on Pattern Recognition. IEEE; 1996, Vol. 1, 253–257, www. dai.ed.ac.ukgroupssmvuuellipse-demo.html, DOI: 10.1109/ICPR.1996.546029.
  • [10] GODA I., ASSIDI M., BELOUETTAR S., GANGHOFFER J.F., A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization, Journal of the Mechanical Behavior of Biomedical Materials, 2012, 16, 87–108. https://www.sciencedirect.com/science/article/pii/S1751616112002135, DOI: 10.1016/J.JMBBM.2012.07.012.
  • [11] HONG J., CHA H., PARK Y., LEE S., KHANG G., KIM Y., Elastic Moduli and Poisson’s Ratios of Microscopic Human Femoral Trabeculae, 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, 274–277, DOI: 10.1007/978-3-540-73044-6_68.
  • [12] KERSH M.E., ZYSSET P.K., PAHR D.H., WOLFRAM U., LARSSON D., PANDY M.G., Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images, Journal of Biomechanics, 2013, 46 (15), 2659–2666, DOI: 10.1016/j.jbiomech.2013.07.047.
  • [13] LANDIS W.J., The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix, Bone, 1995, 16 (5), 533–544, DOI: 10.1016/8756-3282(95)00076-P.
  • [14] MARCO M., GINER E., CAEIRO-REY J.R., MIGUÉLEZ M.H., LARRAÍNZAR-GARIJO R., Numerical modelling of hip fracture patterns in human femur, Computer Methods and Programs in Biomedicine, 2019, 173, 67–75, https://www.sciencedirect.com/science/article/pii/S0169260719302275, DOI: 10.1016/J.CMPB.2019.03.010.
  • [15] MARTÍNEZ-REINA J., DOMÍNGUEZ J., GARCÍA-AZNAR J.M., Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach, Biomechanics and Modeling in Mechanobiology, 2011, 10 (3), 309–322, http://link.springer.com/10.1007/s10237-010-0236-4. DOI: 10.1007/s10237-010-0236-4.
  • [16] MORENO R., BORGA M., SMEDBY O., Techniques for Computing Fabric Tensors – A Review, Mathematics and Visualization, 2014, Vol. 5, 271–292, DOI: 10.1007/978-3-642-54301-2_12.
  • [17] MORENO R., SMEDBY Ö., PAHR D.H., Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors, Biomechanics and Modeling in Mechanobiology, 2016, 15 (4), 831–844, http://link.springer.com/10.1007/s10237-015-0726-5, DOI: 10.1007/s10237-015-0726-5.
  • [18] NAZEMI S.M., COOPER D.M.L., JOHNSTON J.D., Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study, Medical Engineering and Physics, 2016, 38 (9), 978–987, https://www.sciencedirect.com/science/article/pii/S1350453316301254, DOI: 10.1016/J.MEDENGPHY.2016.06.011.
  • [19] PERRIN E., BOU-SAÏD B., MASSI F., Numerical modeling of bone as a multiscale poroelastic material by the homogenization technique, Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 373–382, https://www.sciencedirect.com/science/article/pii/S1751616118309020, DOI: 10.1016/J.JMBBM.2018.12.015.
  • [20] PEYROTEO M.M.A., BELINHA J., VINGA S., DINIS L.M.J.S., NATAL JORGE R.M., Mechanical bone remodelling: Comparative study of distinct numerical approaches, Engineering Analysis with Boundary Elements, 2019, 100, 125–139, https://www.sciencedirect.com/science/article/pii/S0955799717304022 ?via%3Dihub, DOI: 10.1016/j.enganabound.2018.01.011.
  • [21] RHO J.-Y., KUHN-SPEARING L., ZIOUPOS P., Mechanical properties and the hierarchical structure of bone, Medical Engineering and Physics, 1998, 20 (2), 92–102, DOI: 10.1016/S1350-4533(98)00007-1.
  • [22] SABET F.A., RAEISI NAJAFI A., HAMED E., JASIUK I., Modelling of bone fracture and strength at different length scales: a review, Interface Focus, 2016, 6 (1), 20150055, DOI: 10.1098/rsfs.2015.0055.
  • [23] SANZ-HERRERA J.A.A., GARCÍA-AZNAR J.M.M., DOBLARÉ M., On scaffold designing for bone regeneration: A computational multiscale approach, Acta Biomaterialia, 2009, 5 (1), 219–229, https://www.sciencedirect.com/science/article/pii/S1742706108002286, DOI: 10.1016/J.ACTBIO.2008.06.021.
  • [24] WHITEHOUSE W.J., The quantitative morphology of anisotropic trabecular bone, Journal of Microscopy, 1974, 101 (2), 153–168, DOI: 10.1111/j.1365-2818.1974.tb03878.x.
  • [25] WNEK G.E., BOWLIN G.L., Encyclopedia of biomaterials and biomedical engineering, 2nd ed., CRC Press, New York, 2004, https://www.crcpress.com/Encyclopedia-of-Biomaterials-andBiomedical-Engineering/Wnek-Bowlin/p/book/9781420078022, DOI: 10.5860/choice.42-1940.
  • [26] WOLFF J., The Law of Bone Remodelling, Springer, Berlin, Heidelberg, 1886, http://linkinghub.elsevier.com/retrieve/pii/8756328295003738, DOI: 10.1007/978-3-642-71031-5.
  • [27] ZIENKIEWICZ O., TAYLOR R., ZHU J.Z., The Finite Element Method: Its Basis and Fundamentals, 7th ed., Butterworth–Heinemann, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11a917d8-f262-4d08-b69e-bf861e3b95bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.