PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strabismic amblyopia affects decision processes preceding saccadic response

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Amblyopia is a developmental disorder of vision associated with abnormal visual stimula- tion during early childhood. It is known that amblyopia may affect not only spatial vision parameters but also oculomotor behavior. Several previous studies showed that increased saccadic reaction time (latency) may be present in amblyopic subjects. In our recent work, we have demonstrated that not only amblyopic but also a dominant eye may show increased saccadic latency in strabismic individuals. Since saccadic latency can be considered as a decision time, we have applied LATER (Linear Approach to Threshold with Ergodic Rate) decision model to find out how developmental impairment of visual input affects visual decision-making processes, as well as to verify whether amblyopia affects also the cortical ability to inhibit more primitive, early saccadic responses during our modified delayed saccade task. Ten subjects with strabismic amblyopia and twelve control subjects were examined. As we expected, strabismic amblyopes showed decreased rate of rise of the neural decision signal for all viewing conditions as compared to controls. In addition, the comparison between the strabismic and anisometropic groups revealed that the amblyopic eye in strabismic subjects showed decreased rate of rise of the decision signal as compared to amblyopic eye in anisometropic subjects. Although we speculated that amblyopia may reduce the ability of cortical control and favor more reflexive, early saccadic actions to occur, our findings did not confirm this hypothesis. This study provide further evidence that amblyopia is associated with cortical deficits which affect the cortical decision about saccade initiation.
Twórcy
autor
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, 02-109 Warsaw, Ks. Trojdena 4, Warsaw, Poland
autor
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, 02-109 Warsaw, Ks. Trojdena 4, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, 02-109 Warsaw, Ks. Trojdena 4, Warsaw, Poland
autor
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, 02-109 Warsaw, Ks. Trojdena 4, Warsaw, Poland
Bibliografia
  • [1] McKee SP, Levi DM, Movshon JA. The pattern of visual deficits in amblyopia. J Vis 2003;3(5):5.
  • [2] Duan Y, Norcia AM, Yeatman JD, Mezer A. The structural properties of major white matter tracts in strabismic amblyopia. Invest Ophthalmol Vis Sci 2015;56:5152–60.
  • [3] Bonneh YS, Sagi D, Polat U. Spatial and temporal crowding in amblyopia. Vision Res 2007;47(14):1950–62.
  • [4] Ciuffreda KJ, Kenyon RV, Stark L. Abnormal saccadic substitution during small-amplitude pursuit tracking in amblyopic eyes. Invest Ophthalmol Vis Sci 1979;18(5): 506–16.
  • [5] Ciuffreda KJ, Kenyon RV, Stark L. Fixational eye movements in amblyopia and strabismus. J Am Optom Assoc 1979;50 (11):1251–8.
  • [6] Subramanian V, Jost RM, Birch EE. A quantitative study of fixation stability in amblyopia. Invest Opthalmol Vis Sci 2013;54(3):1998.
  • [7] Shaikh AG, Otero-Millan J, Kumar P, Ghasia FF. Abnormal fixational eye movements in amblyopia. PLOS ONE 2016;11 (3):e0149953.
  • [8] Ciuffreda KJ, Kenyon RV, Star L. Processing delays in amblyopic eyes. Optom Vis Sci 1978;55(3):187–96.
  • [9] Perdziak M, Witkowska D, Gryncewicz W, Przekoracka- Krawczyk A, Ober J. The amblyopic eye in subjects with anisometropia show increased saccadic latency in the delayed saccade task. Front Integr Neurosci 2014;8(8).
  • [10] McKee SP, Levi DM, Schor CM, Movshon JA. Saccadic latency in amblyopia. J Vis 2016;16(5):3.
  • [11] Perdziak M, Witkowska DK, Gryncewicz W, Ober JK. Not only amblyopic but also dominant eye in subjects with strabismus show increased saccadic latency. J Vis 2016;16 (10):12.
  • [12] Leigh RJ, Zee DS. The neurology of eye movements. Oxford University Press; 2006.
  • [13] Wheeless LL, Cohen GH, Boynton RM. Luminance as a parameter of the eye-movement control system. J Opt Soc Am 1967;57(3):394.
  • [14] Kalesnykas RP, Hallett PE. Retinal eccentricity and the latency of eye saccades. Vision Res 1994;34(4):517–31.
  • [15] Reddi BA, Carpenter RH. The influence of urgency on decision time. Nat Neurosci 2000;3(8):827–30.
  • [16] Reddi B, Asrress K, Carpenter R. Accuracy, information, and response time in a saccadic decision task. J Neurophysiol 2003;90(5):3538–46.
  • [17] Fischer B, Ramsperger E. Human express saccades: extremely short reaction times of goal directed eye movements. Exp Brain Res 1984;57(1).
  • [18] Wurtz RH, Goldberg ME. The neurobiology of saccadic eye movements, vol. 3. Elsevier Science Ltd; 1989.
  • [19] Noorani I, Carpenter R. The LATER model of reaction time and decision. Neurosci Biobehav Rev 2016;64:229–51.
  • [20] Noorani I, Gao MJ, Pearson BC, Carpenter RHS. Predicting the timing of wrong decisions with LATER. Exp Brain Res 2011;209(4):587–98.
  • [21] Levi DM, Klein S. Differences in vernier discrimination for grating between strabismic and anisometropic amblyopes. Invest Ophthalmol Vis Sci 1982;23:398–407.
  • [22] Choi MY, Lee KM, Hwang JM, Choi DG, Lee DS, Park KH, et al. Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br J Ophthalmol 2001;85:1052–6.
  • [23] Agrawal R, Conner IP, Odom JV, Schwartz TL, Mendola JD. Relating binocular and monocular vision in strabismic and anisometropic amblyopia. Arch Ophthalmol 2006;124: 844–50.
  • [24] Carpenter RH, Williams ML. Neural computation of log likelihood in control of saccadic eye movements. Nature 1995;377(6544):59–62.
  • [25] Noorani I. LATER models of neural decision behavior in choice tasks. Front Integr Neurosci 2014;8:67.
  • [26] Braun D, Weber H, Mergner T, Schulte-Mönting J. Saccadic reaction times in patients with frontal and parietal lesions. Brain: J Neurol 1992;115(Pt 5):1359–86.
  • [27] Halliday J, Carpenter RHS. The effect of cognitive distraction on saccadic latency. Perception 2010;39:41–50.
  • [28] Kimberg DY, Farah MJ. A unified account of cognitive impairments following frontal lobe damage: the role of working memory in complex, organized behavior, Journal of experimental psychology. General 1993;122: 411–28.
  • [29] Levy DL, Mendell NR, Holzman PS. The antisaccade task and neuropsychological tests of prefrontal cortical integrity in schizophrenia: empirical findings and interpretative considerations. World Psychiatry 2004;3:32–40.
  • [30] Anderson SJ, Holliday IE, Harding GF. Assessment of cortical dysfunction in human strabismic amblyopia using magnetoencephalography (MEG). Vision Res 1999;39: 1723–38.
  • [31] Lerner Y, Hendler T, Malach R, Harel M, Leiba H, Stolovitch C, et al. Selective fovea-related deprived activation in retinotopic and high-order visual cortex of human amblyopes. Neuroimage 2006;33:169–79.
  • [32] Bonhomme GR, Liu GT, Miki A, Francis E, Dobre M-C, Modestino EJ, et al. Decreased cortical activation in response to a motion stimulus in anisometropic amblyopic eyes using functional magnetic resonance imaging. J AAPOS 2006;10:540–6.
  • [33] Mendola JD, Conner IP, Roy A, Chan S-T, Schwartz TL, Odom JV, et al. Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Hum Brain Map 2005;25:222–36.
  • [34] Anderson SJ, Swettenham JB. Neuroimaging in human amblyopia. Strabismus 2006;14:21–35.
  • [35] Hess RF, Thompson B, Gole G, Mullen KT. Deficient responses from the lateral geniculate nucleus in humans with amblyopia. Eur J Neurosci 2009;29:1064–70.
  • [36] Wang T, Li Q, Guo M, Peng Y, Li Q, Qin W, et al. Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state. Brain Res 2014;1563:41–51.
  • [37] Daw NW. Critical periods and amblyopia. Archiv Ophthalmol (Chicago Ill: 1960) 1998;116:502–5.
  • [38] Niechwiej-Szwedo E, Chandrakumar M, Goltz HC, Wong AMF. Effects of strabismic amblyopia and strabismus without amblyopia on visuomotor behavior, I: saccadic eye movements. Invest Ophthalmol Vis Sci 2012;53:7458–68.
  • [39] Carpenter RHS. SPIC: a Pc-based system for rapid measurements of saccadic responses. J Physiol (London) 1994;480. P4-P4.
  • [40] Bui Quoc E, Milleret C. Origins of strabismus and loss of binocular vision. Front Integr Neurosci 2014;8:71.
  • [41] Heekeren HR, Marrett S, Ungerleider LG. The neural systems that mediate human perceptual decision making. Nat Rev Neurosci 2008;9(6):467–79.
  • [42] Kim JN, Shadlen MN. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat Neurosci 1999;2(2):176–85.
  • [43] Pierrot-Deseilligny C, Müri RM, Nyffeler T, Milea D. The role of the human dorsolateral prefrontal cortex in ocular motor behavior. Ann N Y Acad Sci 2005;1039(1):239–51.
  • [44] Pouget P. The cortex is in overall control of 'voluntary' eye movement. Eye 2014;29(2):241–5.
  • [45] Zhang W, Zhao K. Multifocal VEP difference between early-and late-onset strabismus amblyopia. Doc Ophthalmol 2005;110:173–80.
  • [46] Farzin F, Norcia AM. Impaired visual decision-making in individuals with amblyopia. J Vis 2011;11(14). 6-6.
  • [47] Munoz DP, Broughton JR, Goldring JE, Armstrong IT. Age-related performance of human subjects on saccadic eye movement tasks. Exp Brain Res 1998;121: 391–400.
  • [48] Fukushima J, Hatta T, Fukushima K. Development of voluntary control of saccadic eye movements. I. Age- related changes in normal children. Brain Dev 2000;22 (3):173–80.
  • [49] Sparks D, Rohrer WH, Zhang Y. The role of the superior colliculus in saccade initiation: a study of express saccades and the gap effect. Vision Res 2000;40:2763–77.
  • [50] Carpenter RH. Express saccades: is bimodality a result of the order of stimulus presentation? Vision Res 2001;41:1145–51.
  • [51] Coubard O, Daunys G, Kapoula Z. Gap effects on saccade and vergence latency. Exp Brain Res 2004;154(3): 368–81.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11a61fba-f1bf-4af7-8372-a1de5aaa5df6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.