PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The calculation of the eigenfrequencies of the torsional free vibrations of the bars using the method of fundamental solutions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Jubilee Symposium Vibrations In Physical Systems (25 ; 15-19.05.2012 ; Będlewo koło Poznania ; Polska)
Języki publikacji
EN
Abstrakty
EN
This work concerns an application of the method of fundamental solutions to the calculation of the eigenfrequencies of the torsional natural vibrations of the bars. The problem of the torsional free vibrations of the bar is an initial-boundary value problem. In the solution process of this problem, the method of variables separation is used. The boundary value problem is solved by the method of fundamental solutions. The different shapes of the bar cross-section are taken into account. The numerical calculations are performed for the rods made of the materials with the different characteristics (mass, density, shear modulus, etc.). To check the accuracy of the proposed methods the results of numerical experiment are included.
Rocznik
Tom
Strony
429--434
Opis fizyczny
Bibliogr. 22 poz., 1 rys.
Twórcy
  • Institute of Applied Mechanics, Poznan University of Technology, ul Piotrowo 3, 60-965 Poznan, POLAND
autor
  • Institute of Applied Mechanics, Poznan University of Technology, ul Piotrowo 3, 60-965 Poznan, POLAND
Bibliografia
  • 1. J. D. Achenbach, Wave propagation in elastic solids, North-Holland Publishing Company, 1975.
  • 2. J. P. Agnantiaris, D. Polyzos, D. E. Beskos, Free vibration analysis of nonaxisymmetric and axisymmetric structures by the dual reciprocity BEM, Engineering Analysis with Boundary Elements 25 (2001) 713-723.
  • 3. R. Bąk, T. Burczyński, Wytrzymałość materiałów z elementami ujęcia komputerowego, Wydawnictwa Naukowo-Techniczne, Warszawa 2001.
  • 4. G. Fairweather, A. Karageorghis, The method of fundamental solutions for elliptic boundary value problems. Advances in Computational Mathematics, 9 (1998) 69-95.
  • 5. M. A. Golberg, C. S. Chen, The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: Golberg MA, editor. Boundary integral methods - numerical and mathematical aspects. Boston, Computational Mechanics Publications, 1998, 103-176.
  • 6. P. Gorzelańczyk, J. A. Kołodziej, Some remarks concerning the shape of the source contour with application of the method of fundamental solutions, Engineering Analysis with Boundary Elements, 31 (2007) 200-208.
  • 7. P. Gorzelańczyk, H. Tylicki, J. A. Kołodziej, The torsional stiffness of bars with L, [, +, [symbol] and [symbol] cross-section, Steel and Composite Structures, 7 (2007) 441-456.
  • 8. R. Gutowski, A. Swietlicki, Dynamika i drgania układów mechanicznych, PWN, Warszawa 1986.
  • 9. M. Itagaki, S. Nishiyama, S. Tomioka, T. Enoto, N. Sahashi, Power iterative multiple reciprocity boundary element method for solving three-dimensional Helmholtz eigenvalue problems, Engineering Analysis with Boundary Elements 20 (1997) 113-121.
  • 10. A. Karageorghis, The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation, Applied Mathematics Letters, 14 (2001) 837-842.
  • 11. A. Karageorghis, G. Fairweather, The method of fundamental solutions for axisymmetric potential problems, International Journal for Numerical Methods in Engineering, 44 (1999) 1653-1669.
  • 12. J. A. Kołodziej, P. Gorzelańczyk, Application of method of fundamental solutions for elasto-plastic torsion of prismatic rods, Engineering Analysis with Boundary Elements, 36 (2012) 81-86.
  • 13. V. D. Kupradze, M. A. Aleksidze, The method of functional equations for the approximate solution of certain boundary-value problems, USRR, Computational Mathematics and Mathematical Physics, 4 (1964) 82-126.
  • 14. G. R. Liu, Mesh free methods. Moving beyond finite element method, CRC Press, Boca Raton 2003.
  • 15. R. Mathon, R. L. Johnston, The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM Journal on Numerical Analysis, 14 (1977) 638-650.
  • 16. W. Nowacki, Teoria sprężystości, PWN, Warszawa 1970.
  • 17. E. J. Sapountzakis, Torsional vibrations of composite bars by BEM, Composite Structures, 70 (2005) 229-239.
  • 18. S. Yu. Reutskiy, The method of fundamental solutions for problems of free vibrations of plates, Engineering Analysis with Boundary Elements, 31 (2007) 10-21.
  • 19. A. Uscilowska, A. Fraska, An investigation of functionally graded material parameters effects on free torsional vibrations of a bar using meshfree methods, Vibrations in Physical Systems, 24 (2010) 435-440.
  • 20. A. Uściłowska, Rozwiązywanie wybranych zagadnień nieliniowych mechaniki metodą rozwiązań podstawowych, Wydawnictwo Politechniki Poznańskiej, Poznań 2008.
  • 21. A. Uściłowska, A. Fraska, Implementation of the method of fundamental solutions for solving a torsion problem of a rod made with functionally graded material, Reviews on Advanced Materials Science, in press.
  • 22. A. Uściłowska, A. Fraska, Mesh-free method based numerical experiment for estimation of torsional stiffness of a long bone, Journal of Mechanics of Materials and Structures, in press.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-119882cf-e0f7-453a-aa77-e66638ea1cb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.