PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Triassic micro-charcoal as a promising puzzle piece in palaeoclimate reconstruction: An example from the Germanic Basin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fossil charcoal is the primary source of evidence for palaeo-wildfires and has gained increasing interest as a proxy in the reconstruction of past climates and environments. Today, increasing temperatures and decreasing precipitation/humidity appear to correlate with increases in the frequency and intensity of wildfires in many regions worldwide. Apart from appropriate climatic conditions, sufficient atmospheric oxygen (>15%) is a necessary precondition to sustain combustion in wildfires. The Triassic has long been regarded as a period without evidence of wildfires; however, recent studies on macro-charcoal have provided data indicating their occurrence throughout almost the entire Triassic. Still, the macro-palaeobotanical record is scarce and the study of micro-charcoal from palynological residue is seen as very promising to fill the gap in our current knowledge on Triassic wildfires. Here, the authors present the first, verified records of micro-charcoal from the Triassic of the Germanic Basin, complementing the scarce macro-charcoal evidence of wildfires during Buntsandstein, Muschelkalk and Keuper (Anisian-Rhaetian). The particles analysed by means of scanning electron microscopy (SEM) show anatomical features typical of gymnosperms, a major element of the early Mesozoic vegetation following the initial recovery phase after the PT-boundary event. From the continuously increasing dataset of Triassic charcoal, it becomes apparent that the identification of wildfires has a huge potential to play a crucial role in future studies, deciphering Triassic climate dynamics. The first SEM study of micro-charcoal from palynological residue spanning the entire Triassic period, presented here, is a key technique to further unravel the charcoal record as a puzzle piece in palaeoclimate reconstruction.
Słowa kluczowe
Rocznik
Strony
219--231
Opis fizyczny
Bibliogr. poz., fot., rys., wykr. 121
Twórcy
  • State Authority for Mining, Energy and Geology, Stilleweg 2, 30655 Hannover, Germany
autor
  • Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
Bibliografia
  • 1. Abu Hamad, A. M. B., Jasper, A. & Uhl, D., 2012. The record of Triassic charcoal and other evidence for palaeo-wild- fires: Signal for atmospheric oxygen levels, taphonomic biases or lack of fuel? International Journal of Coal Geology, 96-97: 60-71.
  • 2. Abu Hamad, A. M. B., Jasper, A. & Uhl, D., 2013. Charcoal remains from the Mukheiris Formation of Jordan - the first evidence of palaeowildfire from the Anisian (Middle Triassic) of Gondwana. Jordan Journal of Earth and Environmental Sciences, 5: 17-22.
  • 3. Abu Hamad, A. M. B., Jasper, A. & Uhl, D., 2014. Wood remains from the Late Triassic (Carnian) of Jordan and their paleoenvironmental implications. Journal of African Earth Sciences, 95: 168-174.
  • 4. Aigner, T. & Bachmann, G. H., 1992. Sequence-stratigraphic framework of the German Triassic. Sedimentary Geology, 80: 115-135.
  • 5. Arzadún, G., Cisternas, M. E., Cesaretti, N. N. & Tomezzoli, R. N., 2017. Presence of charcoal as evidence of paleofires in the Claromecó Basin, Permian of Gondwana, Argentina: Diagenetic and paleoenvironment analysis based on coal petrography studies. GeoResJ, 14: 121-134.
  • 6. Bachmann, G. H., Beutler, G., Franz, M., Hagdorn, H., Hauschke, N., Kozur, H. W. & Röhling, H.-G., 2021. Stratigraphie der Germanischen Trias in Deutschland und Nachbarländern. In: Hauschke, N., Franz, M. & Bachmann, G. H. (eds), Trias - Aufbruch in das Erdmittelalter. Pfeil, Munich, pp. 22-39.
  • 7. Backhaus, E., Hagdorn, H., Heunisch, C. & Schulz, E., 2013. Biostratigraphische Gliederungsmöglichkeiten des Buntsandstein. In: Deutsche Stratigraphische Kommission (ed.), Stratigraphie von Deutschland XI. Buntsandstein. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 69: 151-164.
  • 8. Baker, S. J., 2022. Fossil evidence that increased wildfire activity occurs in tandem with periods of global warming in Earth's past. Earth-Science Reviews, 224: 103871.
  • 9. Belcher, C. M., 2016. The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire. Philosophical Transactions of the Royal Society of London: Biological Sciences, 371: 20150163.
  • 10. Belcher, C. M. & McElwain, J. C., 2008. Limits for combustion in low O2 redefine paleoatmospheric predictions for the Mesozoic. Science, 321: 1197-1200.
  • 11. Bergman, N. M., Lenton, T. M. & Watson, A. J., 2004. COPSE: a new model of biogeochemical cycling over Phanerozoic time. American Journal of Science, 304: 397-437.
  • 12. Berner, R. A., 2005. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochimica et Cosmochimica Acta, 69: 3211-3217.
  • 13. Berner, R. A., 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70: 5653-5664.
  • 14. Berner, R. A., 2009. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. American Journal of Science, 309: 603-606.
  • 15. Berner, R. A. & Canfield, D. E., 1989. A new model for atmospheric oxygen over Phanerozoic time. American Journal of Science, 289: 333-361.
  • 16. Beutler, G., Heunisch, C., Luppold, F. W., Rettig, B. & Röhling, H.-G., 1996. Muschelkalk, Keuper und Lias am Mittellandkanal bei Sehnde (Niedersachsen) und die regionale Stellung des Keupers. Geologisches Jahrbuch, A145: 67-197.
  • 17. Cai, Y.-F., Zhang, H., Feng, Z. & Shen, S.-Z., 2021. Intensive wildfire associated with volcanism promoted the vegetation changeover in Southwest China during the Permian-Triassic transition. Frontiers in Earth Science, 9: 615-841.
  • 18. Cardoso, D., Mizusaki, A. M. P., Guerra-Sommer, M., Menegat, R., Jasper, A. & Uhl, D., 2018. Wildfires in the Triassic of Gondwana Paraná Basin. Journal of South American Earth Sciences, 82: 193-206.
  • 19. Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X., 2013 [updated 2022]. The ICS International Chronostratigraphic Chart. Episodes, 36: 199-204.
  • 20. Crawford, A. J., Baker, S. J. & Belcher, C. M., 2018. Fossil charcoals from the Lower Jurassic challenge assumptions about charcoal morphology and identification. Palaeontology, 61: 49-56.
  • 21. Damiani, R. J., 2001. A systematic revision and phylogenetic analysis of Triassic mastodonsauroids (Temnospondyli: Stereospondyli). Zoological Journal of the Linnean Society, 133: 379-482.
  • 22. Decombeix, A.-L., Meyer-Berthaud, B., Rowe, N. & Galtier, J., 2005. Diversity of large woody lignophytes preceding the extinction of Archaeopteris: New data from the middle Tournaisian of Thuringia (Germany). Review of Palaeobotany and Palynology, 137: 69-82.
  • 23. El Atfy, H., Anan, T., Jasper, A. & Uhl, D., 2019. Repeated occurrence of palaeo-wildfires during deposition of the Bahariya Formation (early Cenomanian) of Egypt. Journal of Palaeogeography, 8: 28.
  • 24. Feist-Burkhardt, S., Götz, A. E., Szulc, J. (coord.), Borkhataria, R., Geluk, M., Haas, J., Hornung, J., Jordan, P., Kempf, O., Michalík, J., Nawrocki, J., Reinhardt, L., Ricken, W., Röhling, G.-H., Rüffer, T., Török, Á. & Zühlke, R., 2008. Triassic. In: McCann, T. (ed.), The Geology of Central Europe. Vol. 2. Geological Society, London, pp. 749-821.
  • 25. Fijałkowska, A., 1994. Palynostratigraphy of the Lower and Middle Buntsandstein in north-western part of the Holy Cross Mts. Geological Quarterly, 38: 59-96.
  • 26. Forte, G., Kustatscher, E., Ragazzi, E. & Roghi, G., 2022. Amber droplets in the Southern Alps (NE Italy): a link between their occurrences and main humid episodes in the Triassic. Rivista Italiana di Paleontologia e Stratigrafia, 128: 105-127.
  • 27. Frakes, L. A., 1979. Climates throughout Geologic Time. Elsevier, Amsterdam, 310 pp.
  • 28. Franz, M. & Barnasch, J., 2021. Der Keuper im zentralen Germanischen Becken. In: Hauschke, N., Franz, M. & Bachmann, G. H. (eds), Trias - Aufbruch in das Erdmittelalter. Pfeil, Munich, pp. 83-108.
  • 29. Franz, M., Kaiser, S. I., Fischer, J., Heunisch, C., Kustatscher, E., Luppold, F. W., Berner, U. & Röhling, H.-G., 2015. Eustatic and climatic control on the Upper Muschelkalk Sea (late Anisian/Ladinian) in the Central European Basin. Global and Planetary Change, 135: 1-27.
  • 30. Franz, M., Nowak, K., Berner, U., Heunisch, C., Bandel, K., Röhling, H.-G. & Wolfgramm, M., 2014. Eustatic control on epicontinental basins: the example of the Stuttgart Formation in the Central European Basin (Middle Keuper, Late Triassic). Global and Planetary Change, 122: 305-329.
  • 31. Franz, M., Voigt, T. & Müller, A., 2021. Der Muschelkalk im zentralen Germanischen Becken. In: Hauschke, N., Franz, M. & Bachmann, G. H. (eds), Trias - Aufbruch in das Erdmittelalter. Pfeil, Munich, pp. 57-82.
  • 32. Geluk, M. C. & Röhling, H.-G., 1997. High-resolution sequence stratigraphy of the Lower Triassic ‘Buntsandstein' in the Netherlands and northwestern Germany. Geologie en Mijnbouw, 76: 227-246.
  • 33. German Stratigraphic Commission (ed.), 2016. Stratigraphic Table of Germany 2016. German Research Centre for Geosciences, Potsdam.
  • 34. Gerrienne, P., Meyer-Berthaud, B., Lardeux, H. & Régnault, S., 2010. First record of Rellimia Leclercq & Bonamo (Aneurophytales) from Gondwana, with comments on the earliest lignophytes. In: Vecoli, M., Clément, G. & Meyer- Berthaud, B. (eds), The Terrestrialization Process: Modelling Complex Interactions at the Biosphere-Geosphere Interface. Geological Society, London, Special Publications, 339: 81-92.
  • 35. Glasspool, I. J., Edwards, D. & Axe, L., 2004. Charcoal in the Silurian as evidence for the earliest wildfire. Geology, 32: 381-383.
  • 36. Glasspool, I. J. & Gastaldo, R. A., 2022. Silurian wildfire proxies and atmospheric oxygen. Geology, 50: 1048-1052.
  • 37. Glasspool, I. J. & Scott, A. C., 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geosciences, 3: 627-630.
  • 38. Götz, A. E., 1996. Palynofazielle Untersuchungen zweier Geländeprofile im Unteren Muschelkalk Osthessens und Westthüringens. Geologisches Jahrbuch Hessen, 124: 87-96.
  • 39. Götz, A. E., Feist-Burkhardt, S. & Dittrich, D., 2001. Lithostratigraphie und Palynofazies des Unteren Muschelkalk (Mitteltrias, Anis) der Forschungsbohrung Onsdorf (Saargau). Mainzer geowissenschaftliche Mitteilungen, 30: 43-66.
  • 40. Götz, A. E. & Lenhardt, N., 2011. The Anisian carbonate ramp system of Central Europe (Peri-Tethys Basin): sequences and reservoir characteristics. Acta Geologica Polonica, 61: 59-70.
  • 41. Grauvogel-Stamm, L. & Ash, S. R., 2005. Recovery of the Triassic land flora from the end-Permian life crisis. Comptes Rendus Palevol, 4: 525-540.
  • 42. Grauvogel-Stamm, L. & Kustatscher, E., 2021. Makrofloren der Germanischen Trias: Buntsandstein und Muschelkalk. In: Hauschke, N., Franz, M. & Bachmann, G. H. (eds), Trias - Aufbruch in das Erdmittelalter. Pfeil, Munich, pp. 218-227.
  • 43. Halofsky, J. E., Peterson, D. L. & Harvey, B. J., 2020. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecology, 16: 1-26.
  • 44. Harris, R. M. B., Remenyi, T. A., Williamson, G. J., Bindoff, N. L. & Bowman, D. M. J. S., 2016. Climate-vegetation-fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system? WIREs Climate Change, 7: 910-931.
  • 45. Hauschke, N. & Heunisch, C., 1990. Lithologie und Palynologie der Bohrung USB 3 (Horn - Bad Meinberg, Ostwestfalen): ein Beitrag zur Faziesentwicklung im Keuper. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 181: 79-105.
  • 46. Havlik, P., Aiglstorfer, M., El Atfy, H. & Uhl, D., 2013. A peculiar bonebed from the Norian Stubensandstein (Löwenstein Formation, Late Triassic) of southern Germany and its palaeoenvironmental interpretation. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 269: 321-337.
  • 47. Heinz, C. & Barbaza, M., 1998. Environmental changes during the Late Glacial and Post-Glacial in the central Pyrenees (France): new charcoal analysis and archaeological data. Review of Palaeobotany and Palynology, 104: 1-17.
  • 48. Heunisch, C. & Nitsch, E., 2011. Eine seltene Mikroflora aus der Mainhardt Formation (Keuper, Trias) von Baden-Württemberg (Süddeutschland). Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins, Neue Folge, 93: 55-76.
  • 49. Heunisch, C. & Wierer, J. F., 2021. Palynomorphe der Germanischen Trias. In: Hauschke, N., Franz, M. & Bachmann, G. H. (eds), Trias - Aufbruch in das Erdmittelalter. Pfeil, Munich, pp. 205-217.
  • 50. Hu, F. S., Brubaker, L. B., Gavin, D. G., Higuera, P. E., Lynch, J. A., Rupp, T. S. & Tinner, W., 2006. How climate and vegetation influence the fire regime of the Alaskan boreal biome: the Holocene perspective. Mitigation and Adaptation Strategies for Global Change, 11: 829-846.
  • 51. Huang, Y.-J., Shen, H., Jia, L.-B., Li, S.-F., Su, T., Nam, G.-S., Zhu, H. & Zhou, Z.-K., 2021. Macroscopic fossil charcoals as proxy of a local fire linked to conifer-rich forest from the late Pliocene of northwestern Yunnan, Southwest China. Palaeoworld, 30: 551-561.
  • 52. Hudspith, V. A., Hadden, R. M., Bartlett, A. I. & Belcher, C. M., 2018. Does fuel type influence the amount of charcoal produced in wildfires? Implications for the fossil record. Palaeontology, 61: 159-171.
  • 53. Iversen, J., 1941. Land occupation in Denmark's Stone Age. Danmarks Geologiske Forenhandlungen II, 66: 1-126.
  • 54. Jasper, A., Pozzebon-Silva, Ä., Siqueira Carniere, J. & Uhl, D., 2021. Palaeozoic and Mesozoic palaeo-wildfires: An overview on advances in the 21st Century. Journal of Palaeosciences, 70: 159-171.
  • 55. Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J. & Bowman, D. M. J. S., 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6: 7537.
  • 56. Jones, T. P. & Chaloner, W., 1991. Charcoal, its recognition and palaeoatmospheric significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 97: 29-50.
  • 57. Kelber, K.-P., 1999. Der Nachweis von Paläo-Wildfeuer durch fossile Holzkohlen aus dem süddeutschen Keuper. Terra Nostra, 99/8: 41.
  • 58. Kelber, K.-P., 2007. Die Erhaltung und paläobiologische Bedeutung der fossilen Hölzer aus dem süddeutschen Keuper (Trias, Ladinium bis Rhätium). In: Schüssler, H. & Simon, T. (eds), Aus Holz wird Stein - Kieselhölzer aus dem Keuper Frankens. Offsetdruck Eppe GmbH, Bergatreute-Aulendorf, pp. 37-100.
  • 59. Kelber, K.-P., 2021. Makrofloren der Germanischen Trias: Keuper. In: Hauschke, N., Franz, M. & Bachmann, G. H. (eds), Trias - Aufbruch in das Erdmittelalter. Pfeil, Munich, pp. 228-248.
  • 60. Komarek, E. V., Komarek, B. B. & Carlysle, T. C., 1973. The ecology of smoke particulates and charcoal residues from forest and grassland fires: a preliminary atlas. Bulletin of Tall Timbers Research Station, Miscellaneous Publication, 3: 1-75.
  • 61. Kubik, R., Uhl, D. & Marynowski, L., 2015. Evidence of wildfires during the deposition of the Upper Silesian Keuper succession, Southern Poland. Annales Societatis Geologorum Poloniae, 85: 685-696.
  • 62. Kubik, R., Marynowski, L., Uhl, D. & Jasper, A., 2020. Cooccurrence of charcoal, polycyclic aromatic hydrocarbons and terrestrial biomarkers in an early Permian swamp to lagoonal depositional system, Paraná Basin, Rio Grande do Sul, Brazil. International Journal of Coal Geology, 230: 103590.
  • 63. Kumar, K., Chatterjee, S., Tewari, R., Mehrotra, N. C. & Singh, G. K., 2013. Petrographic evidence as an indicator of volcanic forest fire from the Triassic of Allan Hills, South Victoria Land, Antarctica. Current Science, 104: 422-424.
  • 64. Li, G., Gao, L., Liu, F., Qiu, M. & Dong, G., 2022 (in press). Quantitative studies on charcoalification: Physical and chemical changes of charring wood. Fundamental Research, https://doi.org/10.1016/j.fmre.2022.05.014
  • 65. Liu, D., Zhou, C., Keesing, J. K., Serrano, O., Werner, A., Fang, Y., Che Y., Masque, P., Kinloch, J., Sadekov, A. & Du, Y., 2022. Wildfires enhance phytoplankton production in tropical oceans. Nature Communications, 13: 1348.
  • 66. Lu, M., Ikejiri, T. & Lu, Y., 2021. A synthesis of the Devonian wildfire record: Implications for paleogeography, fossil flora, and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 571: 110321.
  • 67. Mahesh, S., Murthy, S., Charaborty, B. & Roy, M. D., 2015. Fossil charcoal as palaeofire indicators: Taphonomy and morphology of charcoal remains in sub-surface Gondwana sediments of South Karanpura Coalfield. Journal of the Geological Society of India, 85: 567-576.
  • 68. Mangerud, G. & R0muld, A., 1991. Spathian-Anisian (Triassic) palynology at the Svalis Dome, southwestern Barents Sea. Review of Palaeobotany and Palynology, 70: 199-216.
  • 69. Marchetti, L., Forte, G., Kustatscher, E., DiMichele, W., Spencer, L., Roghi, G., Juncal, M., Hartkopf-Fröder, C., Krainer, K., Morelli, C. & Ronchi, A., 2022. The Artinskian Warming Event: an Euramerican change in climate and the terrestrial biota during the early Permian. Earth-Science Reviews, 226: 103922.
  • 70. Martill, D. M., Loveridge, R. F., Mohr, B. A. R. & Simmonds, E., 2012. A wildfire origin for terrestrial organic debris in the Cretaceous Santana Formation Fossil Lagerstätte (Araripe Basin) of north-east Brazil. Cretaceous Research, 34: 135-141.
  • 71. Murthy, S., Mendhe, V. A., Kavali, P. S. & Singh, V. P., 2020. Evidence of recurrent wildfire from the Permian coal deposits of India: Petrographic, scanning electron microscopic and palynological analyses of fossil charcoal. Palaeoworld, 29: 715-728.
  • 72. Murthy, S., Uhl, D., Jasper, A., Sarate, O. S. & Mishra, D. P., 2022. New Evidence for Palaeo-wildfire in the Early Permian (Artinskian) of Gondwana from Wardha Valley Coalfield, India. Journal of the Geological Society of India, 98: 395-401.
  • 73. Ogg, J. G. & Chen, Z.-Q. with contributions of Orchard, M. J. & Jiang, H. S., 2020. The Triassic Period. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. (eds), Geological Time Scale 2020, Vol. 2. Elsevier, Amsterdam, pp. 903-953.
  • 74. Patterson, W. A., Edwards, K. J. & Maguire, D. J., 1987. Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews, 6: 3-23.
  • 75. Paul, J., 2021a. Der Buntsandstein im zentralen Germanischen Becken. In: Hauschke, N., Franz, M. & Bachmann, G. H. (eds), Trias - Aufbruch in das Erdmittelalter. Pfeil, Munich, pp. 49-56.
  • 76. Paul, J., 2021b. Klima der Trias im Germanischen Becken. In: Hauschke, N., Franz, M. & Bachmann, G. H. (eds), Trias - Aufbruch in das Erdmittelalter. Pfeil, Munich, pp. 152-157.
  • 77. Philippe, M., Pacyna, G., Wawrzyniak, Z., Barbacka, M., Boka, K., Filipiak, P., Marynowski, L., Thevenard, F. & Uhl, D., 2015. News from an old wood Agathoxylon keuperianum (Unger) nov. comb. in the Keuper of Poland and France. Review of Palaeobotany and Palynology, 221: 83-91.
  • 78. Pole, M., Wang, Y. D., Dong, C., Xie, X. P., Tian, N., Li, L. Q., Zhou, N., Lu, N., Xie, A. W. & Zhang, X. Q., 2018. Fires and Storms - A Triassic-Jurassic transition section in the Sichuan Basin, China. Palaeobiodiversity and Palaeoenvironments, 98: 29-47.
  • 79. Pöppelreiter, M. & Aigner, T., 2008. High-resolution sequence stratigraphy, facies patterns and controls in a mixed epeiric shelf: Implications for reservoir prediction (Lower Keuper, Triassic, German Basin). Geological Association of Canada, Special Paper, 48: 283-301.
  • 80. Preto, N., Kustatscher, E. & Wignall, P. B., 2010. Triassic climates - State of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 290: 1-10.
  • 81. Rameil, N., Götz, A. E. & Feist-Burkhardt, S., 2000. Highresolution sequence interpretation of epeiric shelf carbonates by means of palynofacies analysis: an example from the Germanic Triassic (Lower Muschelkalk, Anisian) of East Thuringia, Germany. Facies, 43: 123-144.
  • 82. Rowe, N. P. & Jones, T. P., 2000. Devonian charcoal. Palaeogeography, Palaeoclimatology, Palaeoecology, 164: 331-338.
  • 83. Schoch, R. R., 1999. Comparative osteology of Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (BadenWürttemberg, Bayern, Thüringen). Stuttgarter Beiträge zur Naturkunde, Serie B, 278: 1-175.
  • 84. Schroeder, H. C., 1913. Ein Stegocephalen-Schädel von Helgoland. Jahrbuch der Preussischen Geologischen Landesanstalt und Bergakademie, 33: 232-264.
  • 85. Schulz, E., 1962. Sporenpaläontologische Untersuchungen zur Rhät-Lias-Grenze in Thüringen und der Altmark. Geologie, 11: 308-319.
  • 86. Schulz, E., 1967. Sporenpaläontologische Untersuchungen rätoliassischer Schichten im Zentralteil des Germanischen Beckens. Paläontologische Abhandlungen, Abteilung B 2: 541-633.
  • 87. Schulz, E., 1996. Eine Mikroflora aus dem Steinmergelkeuper vom SW-Hang der Wachsenburg bei Gotha (Thüringen). Neues Jahrbuch Geologie Paläontologie, Abhandlungen, 200: 75-86.
  • 88. Scotese, C. R., Song, H., Mills, B. J. W. & van der Meer, D. G., 2021. Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years. Earth-Science Reviews, 215: 103503.
  • 89. Scott, A. C., 2000. The pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 164: 297-345.
  • 90. Scott, A. C., 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 291: 11-39.
  • 91. Scott, A. C., Bowman, D. M. J. S., Bond, W. J., Pyne, S. J. & Alexander, M. E., 2014. Fire on Earth: An Introduction. Wiley Blackwell, Chichester, 413 pp.
  • 92. Scott, A. C. & Glasspool, I. J., 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences of the United States of America, 103: 10861-10865.
  • 93. Scott, A. C. & Jones, T. P., 1991. Microscopical observations of Recent and fossil charcoal. Microscopy and Analysis, 25: 13-15.
  • 94. Seddon, A. W. R., Mackay, A. W., Baker, A. G., Birks, H. J. B., Breman, E., Buck, C. E., Ellis, E. C., Froyd, C. A., Gill, J. L., Gillson, L., et al., 2014. Looking forward through the past: identification of 50 priority research questions in palaeoecology. Journal of Ecology, 102: 256-267.
  • 95. Sellwood, B. W. & Valdes, P. J., 2007. Mesozoic climate. In: Williams, M., Haywood, A. M., Gregory, F. J. & Schmidt, D. N. (eds), Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. The Micropalaeontological Society, Special Publications. Geological Society, London, pp. 210-224.
  • 96. Shivanna, M., Murthy, S., Gautam, S., Souza, P. A., Kavali, P. S., Cerruti Bernardes-de-Oliveira, M. E., Ram-Awatar & Félix, M. C., 2017. Macroscopic charcoal remains as evidence of wildfire from late Permian Gondwana sediments of India: Further contribution to global fossil charcoal database. Palaeoworld, 26: 638-649.
  • 97. Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., Lai, X., 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338: 366-370.
  • 98. Sun, Y. D., Orchard, M. J., Kocsis, Á. T. & Joachimski, M. M., 2020. Carnian-Norian (Late Triassic) climate change: Evidence from conodont oxygen isotope thermometry with implications for reef development and Wrangellian tectonics. Earth and Planetary Science Letters, 534: 116082.
  • 99. Szulc, J., 2000. Middle Triassic evolution of the northern Peri Tethys area as influenced by early opening of the Tethys Ocean. Annales Societatis Geologorum Poloniae, 70: 1-48.
  • 100. Tanner, L., Spencer, G. L. & Zeigler, K. E., 2006. Rising oxygen levels in the Late Triassic: Geological and evolutionary evidence. In: Harris, J. D., Spencer, G. L. & Speilmann, J. A. (eds), The Triassic-Jurassic Terrestrial Transition. New Mexico Museum of Natural History and Science Bulletin, 37: 5-11.
  • 101. Tanner, L. H., Wang, X. & Morabito, A. C., 2012. Fossil charcoal from the Middle Jurassic of the Ordos Basin, China and its paleoatmospheric implications. Geoscience Frontiers, 3: 493-502.
  • 102. Tepley, A. J., Thomann, E., Veblen, T. T., Perry, G. L. W., Holz, A., Paritsis, J., Kitzberger, T. & Anderson-Teixeira, K. J., 2018. Influences of fire-vegetation feedbacks and post-fire recovery rates on forest landscape vulnerability to altered fire regimes. Journal of Ecology, 106: 1925-1940.
  • 103. Thevenon, F. & Anselmetti, F. S., 2007. Charcoal and fly-ash particles from Lake Lucerne sediments (Central Switzerland) characterized by image analysis: anthropologic, stratigraphic and environmental implications. Quaternary Science Reviews, 26: 2631-2643.
  • 104. Traverse, A., 2007. Paleopalynology. Springer, New York, 814 pp. Trotter, J. A., Williams, I. S., Nicora, A., Mazza, M. & Rigo, M., 2015. Long-term cycles of Triassic climate change: a new S18O record from conodont apatite. Earth and Planetary Science Letters, 415: 165-174.
  • 105. Turco, M., Rosa-Cánovas, J. J., Bedia, J., Jerez, S., Montávez, J. P., Llasat, M. C. & Provenzale, A., 2018. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nature Communications, 9: 3821.
  • 106. Uhl, D., Abu Hamad, A. M. B., Kerp, H. & Bandel, K., 2007. Evidence for palaeo-wildfire in the Late Permian palaeotropics - charcoalified wood from the Um Irna Formation of Jordan. Review of Palaeobotany and Palynology, 144: 221-230.
  • 107. Uhl, D., Butzmann, R., Fischer, T. C., Meller, B. & Kustatscher, E., 2012. Wildfires in the Late Palaeozoic and Mesozoic of the Southern Alps - The Late Permian of the Bletterbach- Butterloch area (northern Italy). Rivista Italiana di Paleontologia e Stratigrafia, 118: 223-234.
  • 108. Uhl, D., Hartkopf-Fröder, C., Littke, R. & Kustatscher, E., 2014. Wildfires in the late Palaeozoic and Mesozoic of the Southern Alps - The Anisian and Ladinian (Mid Triassic) of the Dolomites (Northern Italy). Palaeobiodiversity and Palaeoenvironments, 94: 271-278.
  • 109. Uhl, D., Jasper, A., Abu Hamad, A. M. B. & Montenari, M., 2008. Permian and Triassic wildfires and atmospheric oxygen levels. Proceedings of the WSEAS Conferences - Special Issues, 13: 179-187.
  • 110. Uhl, D., Jasper, A., Schindler, T. & Wuttke, M., 2010. First evidence of palaeo-wildfire in the early Middle Triassic (early Anisian) Voltzia Sandstone Fossil-Lagerstätte - the oldest post-Permian macroscopic evidence of wildfire discovered so far. Palaios, 25: 837-842.
  • 111. Uhl, D. & Kerp, H., 2003. Wildfires in the late Palaeozoic of Central Europe - the Zechstein (Upper Permian) of NW- Hesse (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 199: 1-15.
  • 112. Uhl, D., Lausberg, S., Noll, R. & Stapf, K. R. G., 2004. Wildfires in the Late Palaeozoic of Central Europe - an overview of the Rotliegend (Upper Carboniferous-Lower Permian) of the Saar-Nahe Basin (SW-Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 207: 23-35.
  • 113. Uhl, D. & Montenari, M., 2011. Charcoal as evidence of palaeo-wildfires in the Late Triassic of SW Germany. Geological Journal, 46: 34-41.
  • 114. Vanniėre, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W. & Magny, M., 2008. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell'Accesa (Tuscany, Italy). Quaternary Science Reviews, 27: 1181-1196.
  • 115. Veraverbeke, S., Rogers, B., Goulden, M., Jandt, R. R., Miller, C. E., Wiggins, E. B. & Randerson, J. T., 2017. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 7: 529-534.
  • 116. Wan, M.-L., Yang, W., Wan, S. & Wang, J., 2021. Wildfires in the Early Triassic of northeastern Pangaea: Evidence from fossil charcoal in the Bogda Mountains, northwestern China. Palaeoworld, 30: 593-601.
  • 117. Whiteside, J. H., Lindström, S., Irmis, R. B., Glasspool, I. J., Schaller, M. F., Dunlavey, M., Nesbitt, S. J., Smith, N. D. & Turner, A. H., 2015. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years. Proceedings of the National Academy of Sciences of the United States of America, 112: 7909-7913.
  • 118. Whitlock, C. & Larsen, C., 2001. Charcoal as a fire proxy. In: Smol, J. P., Birks, J. B. & Last, W. M., (eds), Tracking Environmental Change Using Lake Sediments. Vol. 3: Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, pp. 75-97.
  • 119. Wood, G. D., Gabriel, A. M. & Lawson, J. C., 1996. Palynological techniques - processing and microscopy. In: Jansonius, J. & McGregor, D. C. (eds), Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, 1: 29-50.
  • 120. Xu, Y., Uhl, D., Zhang, N., Zhao, C., Qin, S., Liang, H. & Sun, Y., 2020. Evidence of widespread wildfires in coal seams from the Middle Jurassic of Northwest China and its impact on paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 559: 109819.
  • 121. Yan, M., Wan, M., He, X., Hou, X. & Wang, J., 2016. First report of Cisuralian (early Permian) charcoal layers within a coal bed from Baode, North China with reference to global wildfire distribution. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 394-408.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-119701ef-9c6c-41a3-baf5-50a58e0adab3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.