Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A self-propagating reaction achieved by initiating an Al/Ni reactive multilayer foil can generate significant heat. The interdiffusion rate of the reactants plays an important role in the foils properties and is mainly affected by premixing and the bilayer thickness. The present research aims to characterize Al/Ni multilayer foils and to investigate their influence on an exploding foil initiator. Samples with different bilayer thicknesses were fabricated by magnetron sputtering. The heat released and the flame velocity were characterized. Foils with a stored energy of about 1100 J/g were prepared and the heat released revealed the existence of a 4 nm premixing layer. The analytical model proposed by Mann was employed to match the measured flame velocities; the fitted model showed good agreement with the experimental results. To make a comparison, Cu and Al/Ni exploding foils with the same bridge size were fabricated and tested in the identical discharge circuit. The results showed that the energy deposition ratio of an Al/Ni foil was 67-69%, while the value for Cu was only 39-45%, which indicated that Al/Ni multilayers could effectively increase the energy utilization of an initiator. Larger average flyer velocities were also observed with the Al/Ni initiators.
Rocznik
Tom
Strony
547--558
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
autor
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
autor
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
Bibliografia
- [1] Wang, J.; Besnoin, E.; Duckham, A.; Spey, S. J.; Reiss, M. E.; Knio, O. M.; Powers, M.; Whitener, M.; Weihs, T. P. Room-temperature Soldering with Nanostructures Foils. Appl. Phys. Lett. 2003, 83(19): 3987-3989.
- [2] Braeuer, J.; Besser, J.; Wiemer, M.; Gessner, T. A Novel Technique for MEMS Packaging: Reactive Bonding with Integrated Material Systems. Sens. Actuators, A 2012, 188(12): 212-219.
- [3] Morris, C. J.; Mary, B.; Zakar, E.; Barron, S.; Fritz, G.; Knio, O. M.; Weihs, T. P.; Hodgin, R.; Wilkins, P.; May, C. Rapid Initiation of Reactions in Al/Ni Multilayers with Nanoscale Layering. J. Phys. Chem. Solids 2010, 71(2): 84-89.
- [4] Yang, C.; Hu, Y.; Shen, R. Q.; Ye, Y. H.; Wang, S.; Hua, T. Fabrication and Performance Characterization of Al/Ni Multilayer Energetic Films. Appl. Phys. A: Mater. Sci. Process 2013, 114(2): 1782-1786.
- [5] Poret, J. C.; Ding, M.; Krieger, F.; Swank, J.; Chen, G.; McMullan, C. Nanofoil Heating Elements for Thermal Batteries. Proc. Army Science Conf., 26th, Orlando, USA 2008, ADM002187.
- [6] Rogachev, A. S. Exothermic Reaction Waves in Multilayer Nanofilms. Russ. Chem. Rev. 2008, 77(1): 22-38.
- [7] Adams, D. P. Reactive Multilayers Fabricated by Vapor Deposition: A Critical Review. Thin Solid Films 2015, 576(16): 98-128.
- [8] Ma, E.; Thompson, C. V.; Clevenger, L. A.; Tu, K. N. Self-propagating Explosive Reactions in Al/Ni Multilayer Thin Films. Appl. Phys. Lett. 1990, 57(12),1262-1264.
- [9] Mann, A. B.; Gavens, A. J.; Reiss, M. E.; Heerden, D. V. Modeling and Characterizing the Propagation Velocity of Exothermic Reactions in Multilayer Foils. J. Appl. Phys. 1997, 82(3): 1178-1188.
- [10] Wang, L.; He, B.; Jiang, X. H. Modeling the Velocity of Self-propagating Exothermic Reactions in Multilayer Foils. Combust. Sci. Technol. 2010, 182(8):1000-1008.
- [11] Trenkle, J. C.; Koerner, L. J.; Tate, M. W.; Gruner, S. M.; Weihs, T. P.; Hufnagel, T. C. Phase Transformations during Rapid Heating of Al/Ni Multilayer Foils. Appl. Phys. Lett. 2008, 93(8): 081903-081903-3.
- [12] Trenkle, J. C.; Koerner, L. J.; Tate, M. W.; Walker, N.; Gruner, S. M.; Weihs, T. P.; Hufnagel, T. C. Time-resolved X-ray Microdiffraction Studies of Phase Transformations during Rapidly Propagating Reactions in Al/Ni and Zr/Ni Multilayer Foils. J. Appl. Phys. 2010, 107(11): 113511-113511-12.
- [13] Rothhaar, U.; Oechsner, H.; Scheib, M.; Müller, R. Compositional and Structural Characterization of Temperature-induced Solid-state Reactions in Al/Ni Multilayers. Phys. Rev. B 2000, 61(2): 974-979.
- [14] Rogachev, A. S.; Vadchenko, S. G.; Mukasyan, A. S. Self-sustained Waves of Exothermic Dissolution in Reactive Multilayer Nano-foils. Appl. Phys. Lett. 2012, 101(6): 3307-3314.
- [15] Simões, S.; Viana, F.; Vieira, M. F. Reactive Commercial Ni/Al Nanolayers for Joining Lightweight Alloys. J. Mater. Eng. Perform. 2014, 23(5): 1536-1543.
- [16] Qiu, X.; Tang, R.; Liu, R.; Huang, H.; Guo, S.; Yu, H. A Micro Initiator Realized by Reactive Ni/Al Nanolaminates. J. Mater. Sci.: Mater. Electron. 2012, 23(12):2140-2144.
- [17] Varesh, R. Electric Detonators: EBW and EFI. Propellants Explos. Pyrotech. 1996, 21(3): 150-154.
- [18] Lv, J. J.; Zeng, Q. X.; Li, M. Y. Metal Foil Gap Switch and Its Electrical Properties.Rev. Sci. Instrum. 2013, 84(4): 045101-045101-5.
- [19] Wang, J.; Besnoin, E.; Duckham, A.; Spey, S. J.; Reiss, M. E.; Knio, O. M.; Weihs, T. P. Joining of Stainless-steel Specimens with Nanostructured Al/Ni Foils. J. Appl. Phys. 2004, 95(1): 248-256.
- [20] Knepper, R.; Snyder, M. R.; Fritz, G.; Fisher, K.; Knio, O. M.; Weihs, T. P. Effect of Varying Bilayer Spacing Distribution on Reaction Heat and Velocity in Reactive Al/Ni Multilayers. J. Appl. Phys. 2009, 105(8): 083504-083504-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1196a0f7-7d97-4b8c-99fa-15d5fc6203da