PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical characterization of orthotropic elastic parameters of a foam by the mixed experimental-numerical analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Different kind of foams, usually made from polymers, metals, ceramics, glass, etc. have been widely used in various branches of civil engineering since the 80s. The most common are polyurethane foams. Since their role in construction nowadays is not only to act as a thermal barrier but also to take some of loads, the engineers need to know also their mechanical properties. This implies that manufacturers or designers must perform a number of laboratory tests in order to find a set of substantial parameters of this particular material. Due to noticeable orthotropic behavior of foams, one needs to carry out several laboratory tests to identify elastic properties only. Here, an enhanced testing methodology is proposed to reduce the number of tests required for characterization of elastic orthotropic properties of foams. By combining the advanced measurement techniques, non-traditional experimental setup, numerical modeling and inverse analysis one can capture all nine elastic properties from just two or three tests. In the paper, full experimental and numerical procedures are presented and validated by noisy pseudo-experimental data.
Rocznik
Strony
383--394
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Institute of Structural Engineering, Poznań, Poland
autor
  • Poznan University of Technology, Institute of Structural Engineering, Poznań, Poland
autor
  • Poznan University of Technology, Institute of Structural Engineering, Poznań, Poland
Bibliografia
  • 1. Avalle M., Belingardi G., Ibba A., 2007, Mechanical models of cellular solids: parameters identification from experimental tests, International Journal of Impact Engineering, 34, 3-27
  • 2. Benderly D., Zafran J., Putter S., 2003, Shear testing of polymer foams, Journal of Testing and Evaluation, 31, 5, 405412
  • 3. Błaszczuk J., Pozorski, Z., 2012, The analysis of the influence of core compression effect on the determination of the shear modulus of the sandwich panel core, Scientific Research of the Institute of Mathematics and Computer Science, 2, 11, 5-13
  • 4. Caliri Jr M.F., Soares G.P., Ang´elico R.A., Canto R.B., Tita V., 2012, Study of an anisotropic polymeric cellular material under compression loading, Materials Research, 15, 3, 359-364
  • 5. Campbell J.G., 1961, The in-plane elastic constants of paper, Australian Journal of Applied Science, 12, 3, 356-357
  • 6. Chuda-Kowalska M., Pozorski Z., Garstecki A., 2010, Experimental determination of shear rigidity of sandwich panels with soft core, Proceedings of the 10th International Conference Modern Buildings Materials, Structures and Techniques, Vilnius Gediminas Technical University Press, 56-63
  • 7. EN 14509 Self-supporting double skin metal faced insulating panels – Factory made products – Specifications
  • 8. Gajewski T., Garbowski T., 2014a, Calibration of concrete parameters based on digital image correlation and inverse analysis, Archives of Civil and Mechanical Engineering, 14, 1, 170-180
  • 9. Gajewski T., Garbowski T., 2014b, Mixed experimental/numerical methods applied for concrete parameters estimation, Recent Advances in Computational Mechanics – Proceedings of the 20th International Conference on Computer Methods in Mechanics, CMM 2013, Łodygowski T., Rakowski J. and Litewka P. (Edit.), CRC Press, 293-302
  • 10. Garbowski T., Maier G., Novati G., 2012, On calibration of orthotropic elastic-plastic constitutive models for paper foils by biaxial tests and inverse analyses, Structural and Multidisciplinary Optimization, 46, 1, 111-128
  • 11. Gibson L.J., Ashby M.F., 1997, Cellular Solids. Structure and Properties, Cambridge University Press, 2nd ed., ISBN 0521499119
  • 12. Janus-Michalska M., 2009, Micromechanical model of auxetic cellural materials, Journal of Theoretical and Applied Mechanics, 47, 4, 737-750
  • 13. Janus-Michalska M., Pęcherski R.B., 2003, Macroscopic properties of open-cell foams based on micromechanical modelling, Technische Mechanik, 23, 2/4, 221-231
  • 14. Juntikka R., Hallstrom S., 2007, Shear characterization of sandwich core materials using fourpoint bending, Journal of Sandwich Structures and Materials, 9, 67-94
  • 15. Kordzikowski P., Janus-Michalska M., Pęcherski R.B., 2005, Specification of energy-based criterion of elastic limit states for cellular materials, Archives of Metallurgy and Materials, 50, 619-634
  • 16. Liu Q., Subhash G., 2004, A phenomenological constitutive model for foams under large deformations, Polymer Engineering and Science, 44, 3, 463-473
  • 17. Maier G., Bolzon G., Buljak V., Garbowski T., Miller B., 2010, Chapter 24. Synergistic combinations of computational methods and experiments for structural diagnosis, [In:] Computer Methods in Mechanics. Lectures of the CMM 2009, M. Kuczma, K. Wilmanski (Edit.), SpringerVarlag Berlin Heidelberg, 453-476
  • 18. Maier G., Buljak V., Garbowski T., Cocchetti G., Novati G., 2014, Mechanical characterization of materials and diagnosis of structures by inverse analyses: some innovative procedures and applications, International Journal of Comutational Methods, 11, 3, 1343002, DOI: 10.1142/S0219876213430020
  • 19. Mills N., 2007, Polymer foams handbook. Engineering and Biomechanics Applications and Design Guide, Butterworth-Heinemann, ISBN-10: 0750680695, ISBN-13: 978-0750680691
  • 20. Murin J., Kompiˇs V., Kutiˇs V., 2011, Computational Modelling and Advanced Simulations, Springer
  • 21. Ozturk U.E., Anlas G., 2009, Energy absorption calculations in multiple compressive loading of polymeric foams, Materials and Design, 30, 15-22
  • 22. Pan B., Qian K., Xie H., Asundi A., 2009, Two-dimensional digital image correlation for inplane displacement and strain measurement: a review, Measurement Science and Technology, 20, 6
  • 23. Roux S., Hild F., Viot P., Bernard D., 2008, Three-dimensional image correlation from X-ray computed tomography of solid foam, Composites: Part A: Applied Science and Manufacturing, 39, 1253-1265
  • 24. Studziński R., Pozorski Z., Garstecki A., 2013, Sensitivity analysis of sandwich beams and plates accounting for variable support conditions, Bulletin of the Polish Academy of Sciences – Technical Sciences, 61, 201-210
  • 25. Subramanian N., Sankar B.V., 2012, Evaluation of micromechanical methods to determine stiffness and strength properties of foams, Journal of Sandwich Structures and Materials
  • 26. Valdevit, L., and Hutchinson,J.W., and Evans, A.G., 2004, Structurally optimized sandwich panels with prismatic cores, International Journal of Solids and Structures, 41, 51055124
  • 27. Zhang S., Dulieu-Barton J.M., Fruehmann R.K., Thomsen O.T., 2012, A methodology for obtaining material properties of polymeric foam at elevated temperatures, Experimental Mechanics, 52, 3-15
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11967289-6289-4be5-8793-52126b403e4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.