PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

THz detectors based on Si-CMOS technology field effect transistors : advantages, limitations and perspectives for THz imaging and spectroscopy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent advances in THz detection with the use of CMOS technology have shown that this option has the potential to be a leading method of producing low-cost THz sensors with integrated readout systems. This review paper, based on authors’ years of experience, presents strengths and weaknesses of this solution. The article gives examples of some hints, regarding radiation coupling and readout systems. It shows that silicon CMOS technology is well adapted to the production of inexpensive imaging systems for sub-THz frequencies. As an example paper presents the demonstrator of a multipixel Si-CMOS THz spectroscopic system allowing for chemical identification of lactose. The THz detectors embedded in this system were manufactured using the CMOS process.
Twórcy
  • Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warszawa, Poland
autor
  • Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, France
autor
  • Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, France
  • Institute of High Pressure Physics of the Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
  • Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warszawa, Poland
autor
  • Inst. of Radioelectronics and Multimedia Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
autor
  • Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warszawa, Poland
  • Faculty of Physics, University of Warsaw, ul. Hoza 69, 00-681 Warsaw, Poland
autor
  • Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warszawa, Poland
  • Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warszawa, Poland
autor
  • Faculty of Physics, University of Warsaw, ul. Hoza 69, 00-681 Warsaw, Poland
autor
  • Inst. of Optoelectronics, Military University of Technology, ul. gen. Witolda Urbanowicza 2, 00-908 Warsaw
autor
  • Inst. of Optoelectronics, Military University of Technology, ul. gen. Witolda Urbanowicza 2, 00-908 Warsaw
autor
  • Inst. of Optoelectronics, Military University of Technology, ul. gen. Witolda Urbanowicza 2, 00-908 Warsaw
Bibliografia
  • [1] M.I. Dyakonov, M.S. Shur, Plasma wave electronics: novel terahertz devices using two dimensional electron fluid, IEEE Trans. Electron. Dev. 43 (10) (1996) 1640–1645.
  • [2] S. Boppel, A. Lisauskas, M. Mundt, D. Seliuta, L. Minkevicius, I. Kasalynas, G. Valusis, M. Mittendorff, S. Winnerl, V. Krozer, H.G. Roskos, CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz, IEEE Trans. Microw. Theory 60 (12) (2012) 3834–3842.
  • [3] A. Lisauskas, U. Pfeiffer, E.O. Ojefors, P.H. Bolivar, D. Glaab, H.G. Roskos, Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors, J. Appl. Phys. 105 (11) (2009) 114511.
  • [4] I. Khmyrova, Yu. Seijyou, Analysis of plasma oscillations in high electron mobility transistor like structures: distributed circuit approach, Appl. Phys. Lett. 91 (2007) 143515.
  • [5] S. Preu, S. Kim, R. Verma, P.G. Burke, M.S. Sherwin, A.C. Gossard, An improved model for non-resonant terahertz detection in field-effect transistors, J. Appl. Phys. 111 (2012) 024502.
  • [6] H. Ruonan, Z. Yaming, K. Youngwan, K. Dae Yeon, S. Hisashi, A. Ehsan, K.O. Kenneth, Active terahertz imaging using Schottky diodes in CMOS: array and 860-GHz Pixel, IEEE J. Solid-State Circuits 48 (10) (2013) 2296.
  • [7] M. Schroeter, T. Rosenbaum, P. Chevalier, B. Heinemann, S.P. Voinigescu, E. Preisler, J. Boeck, A. Mukherjee, SiGe HBT technology: future trends and TCAD-based roadmap, Proc. IEEE 105 (6) (2017) 1068–1086, http://dx.doi.org/10.1109/JPROC.2015.2500024.
  • [8] K. Statnikov, J. Grzyb, B. Heinemann, U.R. Pfeiffer, 160-GHz to 1-THz multi-color active imaging with a lens-coupled SiGe HBT chip-set, IEEE Trans. Microw. Theory 63 (2) (2015) 520–532.
  • [9] J. Grzyb, U. Pfeiffer, THz direct detector and heterodyne receiver arrays in silicon nanoscale technologies, J. Infrared Millim. Terahertz Waves 36 (10) (2015) 998–1032.
  • [10] R. Lachner, Towards 0.7 terahertz silicon germanium heterojunction bipolar technology - the DOTSEVEN project, ECS Trans. 64 (6) (2014) 21–37.
  • [11] U. Pfeiffer, E. Ojefors, A600-GHz CMOS focal-plane array for terahertz imaging applications, 34th European Solid-State Circuits Conference (ESSCIRC) (2008), http://dx.doi.org/10.1109/ESSCIRC.2008.4681804, 110.
  • [12] F. Schuster, H. Videlier, A. Dupret, D. Coquillat, M. Sakowicz, J. Rostaing, M. Tchagaspanian, B. Giffard, W. Knap, A broadband THz imager in a low-cost CMOS technology, IEEE International Solid State Circuits Conference Digest of Technical Papers (ISSCC) (2011), http://dx.doi.org/10.1109/ISSCC.2011. 5746211, 42.
  • [13] F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, W. Knap, Broadband terahertz imaging with highly sensitive silicon CMOS detectors, Opt. Express 19 (8) (2011) 7827.
  • [14] R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Foerster, H.M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS, IEEE J. Solid-State Circuit 47 (2012) 2999–3012.
  • [15] A. Lisauskas, S. Boppel, M. Saphar, V. Krozer, L. Minkevicˇius, R. Venckevicius, D. Seliuta, I. Kasalynas, V. Tamosiuunas, G. Valusis, H.G. Roskos, Detectors for terahertz multi-pixel coherent imaging and demonstration of real-time imaging with a 12x12-pixel CMOS array, Proceedings of the SPIE, 8496 Terahertz Emitters, Receivers, and Applications III (2012), http://dx.doi.org/10.1117/12.930086, p. 84960J.
  • [16] P. Kopyt, J. Marczewski, K. Kucharski, J. Lusakowski, W. Gwarek, Planar antennas for THz radiation detector based on a MOSFET, Houston (US), 2–7 October, 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2011), http://dx.doi.org/10.1109/IRMMW-THz.2011.6105129.
  • [17] D. Coquillat, J. Marczewski, P. Kopyt, N. Dyakonova, B. Giffard, W. Knap, Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction, Opt. Express 24 (1) (2016) 272–281.
  • [18] P. Kopyt, B. Salski, J. Marczewski, P. Zagrajek, J. Łusakowski, Parasitic effects affecting responsivity of sub-THz radiation detector built of a MOSFET, J. Infrared Millim. Terahertz Waves 36 (11) (2015) 1059–1075.
  • [19] S. Boppel, A. Lisauskas, M. Bauer, M. Mundt, R. Venckevicius, L. Minkevicius, D. Seliuta, I. Kasalynas, B. Khamaisi, E. Socher, G. Valusis, V. Krozer, H.G. Roskos, Optimized tera-FET detector performance based on an analytical device model verified up to 9 THz, Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 38th International Conference on (2013), http://dx.doi.org/10.1109/IRMMW-THz.2013.6665574.
  • [20] U.R. Pfeiffer, E. Ojefors, E. Lisauskas, H.G. Roskos, Opportunities for silicon ant mmWave and Terahertz frequencies, Bipolar/BiCMOS Circuits and Technology Meeting, 2008. BCTM 2008. IEEE (2008) 149–156, http://dx.doi.org/10.1109/BIPOL.2008.4662734.
  • [21] P. Kopyt, B. Salski, P. Zagrajek, D. Obrebski, J. Marczewski, Modeling of silicon-based substrates of patch antennas operating in the sub-THz range, IEEE Trans. Terahertz Sci. Technol. 7 (4) (2017) 424–432.
  • [22] A.D. Semenov, H. Richter, H.-W. Hubers, G. Burghardt, A. Smirnov, K.S. Il’in, M. Siegel, J.P. Karamarkovic, Terahertz performance of integrated lens antennas with a hot-electron bolometer, IEEE Trans. Microw. Theory 55 (2) (2007) 239–247.
  • [23] T. Watanabe, S. Boubanga-Tombet, Y. Tanimoto, D. Fateev, V. Popov, D. Coquillat, W. Knap, Y. Meziani, Y. Wang, H. Minamide, H. Ito, T. Otsuji, InP-and GaAs-based plasmonic high-electron-mobility transistors for room-temperature ultrahigh-sensitive terahertz sensing and imaging, IEEE Sens. J. 13 (1) (2013) 89–99.
  • [24] D. Coquillat, P. Zagrajek, N. Dyakonova, K. Chrzanowski, J. Marczewski, Y. Kurita, A. Satou, K. Kobayashi, S. Boubanga Tombet, V.V. Popov, T. Suemitsu, T. Otsuji, W. Knap, Detection of terahertz and mid-infrared radiations by InP-based asymmetric dual-grating-gate HEMTs, Tucson (US), 15–19 September, 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (2014), http://dx.doi.org/10.1109/IRMMW-THz.2014.6956522.
  • [25] U.R. Pfeiffer, E. Ojefors, A. Lisauskas, D. Glaab, H.G. Roskos, A CMOS focal-plane array for terahertz imaging, Radio Frequency Integrated Circuits Symposium, RFIC 2009. IEEE (2009) 433–436, http://dx.doi.org/10.1109/ICIMW.2008.4665429.
  • [26] M. Bauer, R. Vencievicius, I. Kasalynas, S. Bopel, M. Mundt, L. Mikevicius, A. Lisauskas, G. Valusis, V. Krozer, H.G. Roskos, Antenna-coupled field effect transistors for multi-spectral imaging up to 4.25 THz, Opt. Express 22 (16) (2014) 19235–19241.
  • [27] C.C. Enz, G.C. Temes, Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization, Proc. IEEE 84 (11) (1996) 1584, http://dx.doi.org/10.1109/5.542410.
  • [28] C. Kolacinski, D. Obrebski, P. Zagrajek, Integrated, multichannel readout circuit based on chopper amplifier concept for fet-based THz detectors, Circ. Syst. Signal Process. 37 (3) (2018) 984–1006.
  • [29] D. Obrebski, C. Kolacinski, M. Zbiec, P. Zagrajek, The multi-channel small signal readout system for THz spectroscopy and imaging applications, 2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC) (2016) 1–6, http://dx.doi.org/10.1109/VLSI-SoC.2016.7753562.
  • [30] A. Lisauskas, S. Boppel, J. Matukas, V. Palenskis, L. Minkevičius, G. Valušis, P. Haring-Bolívar, Hartmut G. Roskos, Terahertz responsivity and low-frequency noise in biased silicon field-effect transistors, Appl. Phys. Lett. 102 (2013) 153505.
  • [31] U.R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Förster, H. Rücker, B. Heinemann, A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications, IEEE J. Solid-State Circuits 49 (12) (2014) 2938–2950.
  • [32] M. Schirmer, M. Fujio, M. Minami, J. Miura, T. Araki, T. Yasui, Biomedical applications of a real-time terahertz color scanner, Biomed. Opt. Express 1 (2) (2010) 354–366.
  • [33] www.hitran.org.
  • [34] L. Breiman, Random forest, Mach. Learn. 45 (5) (2001) 5–32.
  • [35] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, A Wiley-Interscience Publication, 2001.
  • [36] F.R.S. Karl Pearson, LIII. On lines and planes of closest fit to systems of points in space, Lond. Edinburgh Dublin Philos. Mag. J. Sci. 2 (11) (2010) 559–572, http://dx.doi.org/10.1080/14786440109462720.
  • [37] T.M. Cover, Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition, IEEE Trans. Electron. 14 (3) (1965) 326–334.
Uwagi
1. This work was partially supported by the National Center for Research and Development in Poland (grants Nos. PBS1/A9/11/2012 and 2016/22/E/ST7/00526), by ERANET RUS PLUS - EC project TERASENS (No. 149), by the Foundation for Polish Science (grants Nos. TEAM/2016-3/25 and TEAM/2016-3/26). We acknowledge also help of the project LIA-TERAMIR.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1191760a-5ddb-4ee6-9cc0-9f5edec5f551
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.