PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating flotation behavior and mechanism of modified mineral oil in the separation of apatite ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to enhance the separation floatation of apatite ore, one mineral oil (MO), a petroleum base oil, as a raw material was modified to obtain a novel high-efficiency collector. The optimized modified mineral oil collector (MPBO) was obtained by systematically modified experiments. The results showed that the optimized condition of modification was air-flow rate 0.15 m3/h, potassium permanganate 0.2% (0.04 g), the reaction time 24 h and the temperature 140 °C. The flotation performance and mechanism of MPBO were further studied by flotation tests, zeta potential measurements, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The results of flotation tests showed that MPBO had a higher selectivity than oxidized paraffin soap. When 400 g/t MPBO was used as collector, the concentrate with 96.89% P2O5 recovery and 26.08% P2O5 grade was obtained. It also indicated that MPBO as the collector not only significantly improved the separation index of apatite ore flotation, but also greatly shortened and simplified the flotation process. The analysis of zeta potential, FTIR spectra and XPS revealed that carboxyl group was presented in the MPBO, which could form calcium carboxylate with calcium ion on the apatite surface by chemisorption.
Rocznik
Strony
471--482
Opis fizyczny
Bibliogr. 37 poz., rys., wz.
Twórcy
autor
  • Shen Kan Engineering and Technology Corporation, MCC., Shenyang, 110169, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
  • Science and Technology Innovation Center of Smart Water and Resource Environment, Northeastern University, Shenyang 110819, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
autor
  • School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
Bibliografia
  • ABDEL, K.N.A, HASSAN, F., ARAFA, M.A., 2000. Separation of valuable fine phosphate particles from their slimes by column flotation. Sep. Sci. Tech. 35, 1077-1086.
  • ABOUZEID, A.Z., NEGM, A., ELGILLANI, D.J., 2009. Upgrading of calcareous phosphate ores by flotation: Effect of ore characteristics. Int. J. Miner. Process. 90, 81-89.
  • ABOUZEID, A.Z.M., 2008. Physical and thermal treatment of phosphate ores-an overview. S. Ryom. Colloid. Surface. A. 85, 59-84.
  • CAO, Q.B., CHENG, J.H., WEN, S.M., LI, C.X., BAI, S.J., LIU, D.A., 2015. Mixed collector system for phosphate flotation. Miner Eng. 78, 114-121.
  • CLARK, M.E., BRAKE, I., HULS, B.J., SMITH, B.E., YU, M., 2006. Creating value through application of flotation science and technology. Miner. Eng. 19, 758-765.
  • DOROZHKIN, S.V., 1997. Surface reactions of apatite dissolution. J. Colloid Interf. Sci. 191(2), 489-497.
  • EL-SHALL, H., ZHANG, P., KHALEK, N.A., EL-MOFTY, S., 2004. Beneficiation technology of phosphates: challenges and solutions. Miner. Metall. Process. 21(1), 17-26.
  • FILIPPOV, L.O., FILIPPOVA, I.V., LAFHAJ, Z., FORNASIERO, D., 2019. The role of a fatty alcohol in improving calcium minerals flotation with oleate. Colloid. Surface. A. 560, 410-417.
  • FLEET, M.E., 2009. Infrared spectra of carbonate apatites: v2-Region bands. Biomaterials 30(8), 1473-1481.
  • GE, Y.Y., GAN, S.P., ZENG, X.B., YU, Y.F., 2008. Double reverse flotation process of collophanite and regulating froth action. Trans. Nonferrous. Met. Soc. China. 18(2), 449-453.
  • GUAN, C.J., 2009. Theoretical background of the Crago phosphate flotation process. Miner Metall Process. 26(2), 55-64.
  • HACIFAZLIOGLU, H., SUTCU, H., 2007. Optimization of some parameters in column flotation and a comparison of conventional cell and column cell in terms of flotation performance. J. Chin. Inst. Chem. Eng. 38(3-4), 287-293.
  • HOPE, G.A., WOODS, R., PARKER, G.K., BUCKLEY, A.N., Mclean, J. A., 2010. Vibrational spectroscopy and XPS investigation of the interaction of hydroxamate reagents on copper oxide minerals. Miner Eng. 23(11-13), 952-959.
  • JONG, K., HAN, Y., RYOM, S., 2017. Flotation mechanism of oleic acid amide on apatite. S. Ryom. Colloid. Surface. A. 523, 127-131.
  • KOU, J., TAO, D., XU, G., 2010. Fatty acid collectors for phosphate flotation and their adsorption behavior using QCM-D. Int. J. Miner. Process. 95(1-4), 1-9.
  • KYZAS, G.Z., MATIS, K.A., 2016. Methods of arsenic wastes recycling: Focus on flotation. J. Mol. Liq. 214, 37-45.
  • LIU, C.M., ZI, H. L., CHI, M.A., WEI, M., DONG, Y. W., ZHAO, D.K., GUO, Z.X., 2014. Experimental study on a lowgrade phosphate ore in Gansu. Colloid. Surfaces A. 3, 1-4.
  • LIU, W.B., LIU, W.G., WANG, B.Y., DUAN, H., PENG, X.Y., CHEN, X.D., ZHAO, Q., 2019. Novel hydroxy polyamine surfactant N-(2-hydroxyethyl)-N-dodecyl-ethanediamine: Its synthesis and flotation performance study to quartz. Miner Eng. 142.
  • LIU, W.B., LIU, W.G., ZHAO, Q., PENG , X.Y., WANG, B.Y., ZHOU, S.J. ZHAO, L. 2020. Investigating the performance of a novel polyamine derivative for separation of quartz and hematite based on theoretical prediction and experiment. Sep. Purif. Technol. 237, 116370.
  • LIU, W.B., PENG, X.Y.,LIU, W.G., WANG, X.Y., ZHAO, Q., WANG, B.Y., 2020. Effect mechanism of the iso-propanol substituent on amine collectors in the flotation of quartz and magnesite. Powder Technol. 360, 1117-1125.
  • LU, Y.Q., DRELICH, J., MILLER, J.D., 1998. Oleate adsorption at an apatite surface studied by ex-situ FTIR internal reflection spectroscopy. J. Colloid Interf. Sci. 202(2), 462-476.
  • MALTESH, C., SOMASUNDARAN, P., GRUBER, G.A., 1996. Fundamentals of oleic acid adsorption on phosphate flotation feed during anionic conditioning. Miner. Metall. Process. 13(4), 156-160.
  • NAN, N., ZHU, Y.M., HAN, Y.X., 2019. Flotation performance and mechanism of α-Bromolauric acid on separation of hematite and fluorapatite. Miner. Eng. 132, 162-168.
  • OLIVEIRA, M.S., SANTANA, R.C., ATAÍDE, C.H., BARROZO, M.A.S., 2011. Recovery of apatite from flotation tailings. Sep. Purif. Technol. 79(1), 79-84.
  • PAREDES, J.I., VILLAR-RODIL, S., MARTÍNEZ-ALONSO, A., TASCON, J.M.D., 2008. Graphene oxide dispersions in organic solvents. Langmuir 24(19), 10560-10564.
  • REN, L.Y., QIU, H., ZHANG, M., FENG, K.Y., LIU, P., GUO, J., FENG, J., 2017. Behavior of lead ions in cassiterite flotation using octanohydroxamic acid. Ind. Eng. Chem. Res. 56, 8723-8728.
  • REYNARD, B., BEZACIER, L., CARACAS, R.J., MINERALS, C.O., 2015. Serpentines, talc, chlorites, and their highpressure phase transitions: a Raman spectroscopic study. Phys. Chem. Miner. 42(8), 641-649.
  • SALAH, A.T., ROE-HOAN, Y., DONGCHEOL, S., 2011. A comparison of anionic and cationic flotation of a siliceous phosphate rock in a column flotation cell. Mining Sci. Technol. (China) 21(1), 147-151.
  • SEJIDOV, F.T., MANSOORI, Y.J., 2007. Semi-synthetic motor oils derived from high paraffinic petroleum base stock. Ind. Lubr. Tribol. 59(2), 81-84.
  • SEVIM, F., SARAÇ, H., KOCAKERIM, M.M., YARTAŞI, A., 2003. Dissolution kinetics of phosphate ore in H2SO4 solutions. Ind. Eng. Chem. Res. 42, 2052-2057.
  • SØRENSEN, B.L., DALL, O.L., HABIB, K.J., 2015. Environmental and resource implications of phosphorus recovery from waste activated sludge. Waste Manage. 45, 391-399.
  • TIAN, F., 2011. Preparation of anionic collector from cooking oil: China patent, 102179311. 9-14.
  • WU, Z.S., REN, W.C., GAO, L.B., LIU, B.L., JIANG, C.B., CHENG, H.M., 2009. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47, 493-499.
  • YANG, J.L., DU, M.L., HUANG, J.L., LI, R.S., HAO, X.L., 2013. Study on the application of waste oil to prepare coal flotation collectors. China Coal. 39, 67-69.
  • YU, H.M., WANG, H.J., SUN, C.Y., 2018. Comparative studies on phosphate ore flotation collectors prepared by hogwash oil from different regions. Int. J. Mining Sci. Technol. 28, 453-459.
  • YU, H.M., WANG, H.J., YI, A.F., 2013. Detection study on the mineral processing reagents preparation from catering waste oil and application on ore flotation. Adv. Mater. Res. 699, 119-125.
  • ZHOU, F., WANG, L.X., XU, Z.H., LIU, Q.X., CHI, R., 2015. Reactive oily bubble technology for flotation of apatite, dolomite and quartz. Int. J. Miner. Process. 134, 74-81.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-118abc5b-5ea4-46f2-8ad2-aaa7acf6b2e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.