PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dry Biosolids Reuse as Costless Biodegradable Adsorbent for Cadmium Removal from Water Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The recycling of untreated dry biosolids, as costless biodegradable adsorbent for the removal of cadmium from aqueous phase was characterized. The adsorption of cadmium was reported to depend on initial pH, adsorbent dose, agitation time, and initial Cd concentration. The results of the batch experiments revealed that the maximum adsorption capacity of the untreated dry biosolids was 39.22 mg g-1 under optimum operating conditions (i.e. pH: 5, adsorbent dose: 2 g l-1, contact time: 16h). Adsorption reaches equilibrium after 16h, which can be attributed to both external surface adsorption (R2 = 0.86) and intraparticle dif usion (R2 = 0.98). The Langmuir isotherm model best described cadmium adsorption (R2 = 0.99) and the pseudo-second-order kinetic model was obeyed, suggesting that the mechanism involved was chemisorption. Biodegradability would make the recovery of adsorbed Cd an environmentally friendly process. Comparing the obtained findings with the related published results, it can be concluded that treating biosolids might be an unnecessary and costly procedure for recycling biosolids as an adsorbent for cadmium.
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 70 poz., rys., tab.
Twórcy
  • Department of Water Resources and Environmental Management, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
  • Department of Water Resources and Environmental Management, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
  • Department of Water Resources and Environmental Management, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
autor
  • Department of Chemistry, Faculty of Science, Applied Science Private University, Amman 11931, Jordan
  • Department of Biotechnology, Al-Balqa Applied University, Al-Salt 19117, Jordan
Bibliografia
  • 1. Abdel Aziz M., Bassyouni M., Soliman M.F., Gutub S.A., Magram S.F. (2017). Removal of heavy metals from wastewater using thermally treated sewage sludge adsorbent without chemical activation. Journal of Materials and Environmental Science, 8(5), 1737–1747.
  • 2. Abu Al-Rub F.A., El-Naas M.H., Benyahia F., Ashour I. (2004). Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochemistry, 39, 1767–1773.
  • 3. Ait Ahsainea H., Zbair M., El Haouti R. (2017). Mesoporous treated sewage sludge as outstanding low-cost adsorbent for cadmium removal. Desalination and Water Treatment, 85, 330–338.
  • 4. Alemayehu E., Lennartz B. (2009). Virgin volcanic rocks: kinetics and equilibrium studies for the adsorption of cadmium from water. Journal of Hazardous Materials, 169, 395–401.
  • 5. Alyuz B., Veli S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167, 482–488.
  • 6. Ammari T.G. (2014). Utilization of a natural ecosystem bio-waste; leaves of Arundo donax reed, as a raw material of low-cost eco-biosorbent for cadmium removal from aqueous phase. Ecological Engineering, 71, 466–473.
  • 7. Ammari T.G. (2016). Performance of unmodified paper solid waste for cadmium removal from aqueous phase; equilibrium and kinetic studies. Chemical Engineering Communications, 203, 831–839.
  • 8. Ammari T.G., Al-Labadi I., Tahboub T., Ghrair A. (2015). Assessment of unmodified wetland biowaste: Shoots of Cyperus laevigatus, for cadmium adsorption from aqueous solutions. Process Safety and Environmental Protection, 95, 77–85.
  • 9. Ammari T.G., Al-Atiyat M., Abu-Nameh E.S., Ghrair A., Jaradat D., Abu-Romman S. (2017). Bioremediation of cadmium-contaminated water systems using intact and alkaline-treated alga (Hydrodictyon reticulatum) naturally grown in an ecosystem. International Journal of Phytoremediation, 19(5), 453–462.
  • 10. Anfruns A., Canals Batlle C., Ros A., Lillo Rodenas M.A., Linares Solano A., Fuente E., Montes-Moran M.A., Martin M.J. (2009). Removal of odourcausing compounds using carbonaceous adsorbents/ catalysts prepared from sewage sludge. Water Science and Technology, 59(7), 1371–1376.
  • 11. Azouaou N., Sadaouia Z., Djaafri A., Mokaddem H. (2010). Adsorption of cadmium from aqueous solution onto untreated cofee grounds: equilibrium kinetics and thermodynamics. Journal of Hazardous Materials, 184, 126–134.
  • 12. Babic B., Milonjic S., Polovina M., Cupic S.O., Kaludjerovic B. (2002). Adsorption of zinc, cadmium and mercury ions from aqueous solutions on an activated carbon cloth. Carbon, 40, 1109–1115.
  • 13. Baes C.F., Mesmer R.E. (1986). The hydrolysis of cations, New York: John Wiley and Sons.
  • 14. Belfer S., Fainchtain R., Purinson Y., Kedem O. (2000). Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes unmodified modified and protein fouled. Journal of Membrane Science, 172, 113–124.
  • 15. Bond R.G., Straub C.P. (1974). CRC Hand book of environmental control, vol. 4. Wastewater, Treatment and Disposal. Boca Raton (FL): CRC Press.
  • 16. Bulgariu L., Bulgariu D. (2014). Enhancing biosorption characteristics of marine green algae (Ulva lactuca) for heavy metals removal by alkaline treatment. Journal of Bioprocessing and Biotechniques, 4, 146, http://dx.doi.org/10.4172/2155–9821.1000146.
  • 17. Chen P., Ting Y.P. (1995). Efect of heavy metal uptake on the electrokinetic properties of Saccharomyces cerevisiae. Biotechnology Letters, 17 (1), 107–112.
  • 18. Conesa J.A., Marcilla A., Prats D., RodriguezPastor M, (1997). Kinetic study of the pyrolysis of sewage sludge. Waste Management and Research, 15 (3), 293–305.
  • 19. Cordero B., Lodeiro P., Herrero R., Vicente E. (2004). Biosorption of cadmium by Fucus spiralis. Environmental Chemistry, 3, 180–187.
  • 20. Droussi Z., D’orazio V., Provenzano M.R., Hafidi M., Ouatmane A. (2009). Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. Journal of Hazardous Materials, 164, 1281–1285.
  • 21. El-Deen S.E.A.S., Zhang F. S. (2016). Immobilisation of TiO2-nanoparticles on sewage sludge and their adsorption for cadmium removal from aqueous solutions. Journal of Experimental Nanoscience, 11, 239–258.
  • 22. Elouear Z., Bouzid J., Boujelben N. (2009). Removal of nickel and cadmium from aqueous solutions by sewage sludge ash: Study in single and binary systems. Environmental Technology, 30 (6), 561–570.
  • 23. Essington M.E. (2004) Soil and water chemistry: an integrative approach. Boca Raton (FL): CRC Press.
  • 24. Fonseca G.M., de Oliveira M.M., Arakaki L.N.H. (2006). Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral. Journal of Hazardous Materials, 137 (1), 288–292.
  • 25. Font R., Fullana A., Conesa J.A., Llavador F. (2001). Analysis of the pyrolysis and combustion of diferent sewage sludges by TG. Journal of Analytical and Applied Pyrolysis, 58, 927–941.
  • 26. Gaballah I., Kibertus G. (1998). Recovery of heavy metal ions through decontamination of synthetic solutions and industrial effluents using modified barks. Journal of Geochemistry Exploration, 62, 241–286.
  • 27. Ghodbane I., Nouri L., Hamdaoui O., Chiha M. (2008). Kinetic and equilibrium study for the sorption of cadmium (II) ions from aqueous phase by eucalyptus bark. Journal of Hazardous Materials, 152, 148–158.
  • 28. Gutiérrez-Segura E., Solache-Ríos M., Colín-Cruz A., Fall C. (2012). Adsorption of cadmium by Na and Fe modified zeolitic tufs and carbonaceous material from pyrolyzed sewage sludge. Journal of Environmental Management, 97, 6–13.
  • 29. Hall K.R., Eagleton L.C., Acrivos A., Vermeulen T. (1966). Pore and solid difusion kinetics in fixed-bed adsorption under constant pattern conditions. Industrial and Engineering Chemistry Fundamentals, 5, 212–223.
  • 30. Hammaini A., Gonzalez F., Ballester A., Blazquez M.L., Munoz J.A. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. Journal of Environmental Management, 84 (4), 419–426.
  • 31. Hawari A.H., Mulligan C.N. (2006). Biosorption of lead (II), cadmium (II), copper (II) and nickel (II) by anaerobic granular biomass. Bioresource Technology, 97 (4), 692–700.
  • 32. Ho Y.S., McKay G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.
  • 33. https://www.giz.de/en/worldwide/41405.html (Last Access Date: 05.03.2020).
  • 34. Ishikawa S., Ueda N., Okumura Y., Iida Y., Baba K. (2007). Recovery of coagulant from water supply plant sludge and its efect on clarification. Journal of Material Cycles and Waste Management, 9 (2), 167–172.
  • 35. Kalavathy M.H., Karthikeyan T., Rajgopal S., Miranda L.R. (2005). Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. Journal of Colloid and Interface Science, 292, 354–362.
  • 36. Katsumata H., Kaneco S., Inomata K., Itoh K., Funasaka K., Masuyama K., Suzuki T., Ohta K. (2003). Removal of heavy metals in rinsing wastewater from plating factory by adsorption with economical viable materials. Journal of Environmental Management, 69, 187–191.
  • 37. Khalfa L., Bagane M. (2011). Cadmium removal from aqueous solution by Tunisian smectitic natural and activated clay: thermodynamic study. Journal of Encapsulation and Adsorption Sciences, 1, 65–71.
  • 38. Li X., Li D., Yan Z., Ao Y. (2018). Adsorption of cadmium by live and dead biomass of plant growth-promoting rhizobacteria. RSC Advances, 8, 33523–33533.
  • 39. Lian L.-S., Yuan L., Chai L.-Y., Min X.-B., Wang Y.-Y., Fang Y., Wang P. (2006). Biosorption behaviors of Cu2+, Zn2+, Cd2+ and mixture by waste activated sludge. Transactions of Nonferrous Metals, 16 (6), 1431–1435.
  • 40. Ma L., Wei Q., Chen Y., Song Q., Sun C., Wang Z., Wu G. (2018).Removal of cadmium from aqueous solutions using industrial coal fly ash-Nzvi. Royal Society open science, 5, 171051. http://dx.doi.org/10.1098/rsos.171051.
  • 41. Manahan S.E. (1999a). Chemical Analysis of Water and Wastewater, in: Environmental Chemistry, 7th ed., CRC Press.
  • 42. Manahan S.E. (1999b). Analysis of Wastes and Solids, in: Environmental Chemistry, 7th ed., CRC Press.
  • 43. Masoud M.S., Ali A.E., Elasala G.S. (2015). Synthesis, spectral, computational and thermal analysis studies of metallocefotaxime antibiotics. Spectrochimica Acta Part A, 149, 363–77.
  • 44. Monsalvo V.M., Mohedano A.F., Rodriguez J.J. (2011). Activated carbons from sewage sludge: Application to aqueous-phaseadsorption of 4-chlorophenol. Desalination, 277(1–3), 377–382.
  • 45. Mustafa G., Singh B., Kookana R.S. (2004). Cadmium adsorption and de-sorption behavior on goethite at low equilibrium concentrations: efects of pH and index cations. Chemosphere, 57, 1325–1333.
  • 46. Nageeb R.M., Soltan M.E., Ahmed M.M., Abdou A.N.E. (2017).Removal of Heavy Metals from Wastewater by New Adsorbents from Chemical Activation of Sewage Sludge. Environmental Engineering Management Journal, 16(7), 1531–1542.
  • 47. Nageeb M.R., Soltan M.E., Ahmed M.M., Abdou A.N.A. (2018). Heavy Metals Removal from Wastewater by Adsorption on Modified Physically Activated Sewage Sludge. Archives of Organic and Inorganic Chemical Sciences, 1 (1), 18–25. DOI: 10.32474/AOICS.2018.01.000102.
  • 48. Otero M., Rozada F., Morán A., Calvo L.F., García A.I. (2009). Removal of heavy metals from aqueous solution by sewage sludge-based sorbents: Competitive efects. Desalination, 239(1–3), 46–57.
  • 49. Patricia A., Alon R., Aitor A., Jose M.K., Iñaki M. (2009). Mechanical Properties of Natural Fibers/Polyamides Composites. Polymer Composites, 30 (3), 257–264.
  • 50. Phuengprasop T., Sittiwong J., Unob F. (2011). Removal of heavy metal ions by iron oxide coated sewage sludge. Journal of Hazardous Materials, 186, 502–507.
  • 51. Rahimzadeh M.R., Rahimzadeh M.R., Kazemi S., Moghadamnia A.A. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine, 8(3), 135–145.
  • 52. Rao M.M., Rao G.P., Seshaiah K., Choudary N.V., Wang M.C. (2008). Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions. Waste Management, 28, 849–858.
  • 53. Rashed M.N. (2006) Fruit stones from industrial waste for the removal of lead ions from polluted water. Environmental Monitoring and Assessment, 119 (1–3), 31–41.
  • 54. Rio S., Le Coq L., Faur C., Lecomte D., Le Cloirec P. (2006). Preparation of adsorbents from sewage sludge by steam activation for industrial emission treatment. Process Safety and Environmental Protection, 84(4), 258–264.
  • 55. Ros A., Lillo Rodenas M.A., Fuente E., Montes Moran M.A., Martin M.J., Linares-Solano A. (2006). High surface area materials prepared from sewage sludge-based precursors. Chemosphere, 65(1) 132–140.
  • 56. Saygideger S., Gulnaz O., Istifli E.S., Yucel N. (2005). Adsorption of Cd (II), Cu (II) and Ni (II) ions by Lemna minor L.: efect of physicochemical environment. Journal of Hazardous Materials, 126, 96–104.
  • 57. Semerjian L. (2010). Equilibrium and kinetics of cadmium adsorption from aqueous solutions using untreated Pinus halepensis sawdust. Journal of Hazardous Materials, 173, 236–242.
  • 58. Sheha R.R., El-Zahhar A.A. (2008). Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions. Journal of Hazardous Materials, 150, 795–803.
  • 59. Sparks D.L. (1995). Environmental Soil Chemistry. ACADEMIC PRESS, INC. San Diego.
  • 60. Srivastava V.C., Mall I.D., Mishra I.M. (2006). Equilibrium modeling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chemical Engineering Journal, 117, 79–91.
  • 61. Vázquez G., Freire M.S., González-Alvarez J., Antorrena G., (2009), Equilibrium and kinetic modeling of the adsorption of Cd2+ ions onto chestnut shell, Desalination, 249, 855–860.
  • 62. Wang J. (2002). Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry, 37, 847–850.
  • 63. Wang J., Chen C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27, 195–226.
  • 64. Weber W.J., Morris J.C. (1963). Kinetics of adsorption carbon from solutions. Journal of the Sanitary Engineering Division – American Society of Civil Engineers, 89, 31–60.
  • 65. Weber T.W., Chakravarty R.K. (1974). Pore and solid difusion models for fixed bed adsorbers. Transactions of the American Institute of Chemical Engineers, 20, 228–238.
  • 66. Weber T., Zanchet A., Brandalise R.N., Crespo J.S., Nunes R.C. (2008). Grinding and Characterization of Scrap Rubbers Powders. Journal of Elastomer and Plastics, 40, 147–159.
  • 67. WHO. (1992). Cadmium. Environmental Health Criteria 134. World Health Organisation, International Programme on Chemical Safety (IPCS), Geneva, Switzerland.
  • 68. WHO. (1993). Guidelines for Drinking Water Quality, Vol. 1. WHO, Geneva.
  • 69. Zhai Y., Wei X., Zeng G., Zhang D., Chu K. (2004). Study of adsorbent derived from sewage sludge for the removal of Cd2+, Ni2+ in aqueous solutions. Separation and Purification Technology, 38 (2), 191–196.
  • 70. Zhou Y.-F., Haynes R.J. (2010). Water treatment sludge can be used as an adsorbent for heavy metals in wastewater streams. WIT Transactions on Ecology and the Environment, 140, 379–389.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1187645a-53b1-4463-9a2a-0a5a262b8a56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.