PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possibility of wastewater treatment using MFC with Ni-Co catalyst of fuel electrode

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Możliwość oczyszczania ścieków przy wykorzystaniu mikrobiologicznego ogniwa paliwowego z niklowokobaltowym katalizatorem elektrody paliwowej
Języki publikacji
EN
Abstrakty
EN
One of the problems with microbial fuel cells is a low current density of those energy sources. Nonetheless, it is possible to increase the current density by using the catalyst for fuel electrode (anode) - as long as a low cost catalyst can be found. The possibility of wastewater treatment using the Ni-Co alloy as catalyst for MFC’s is presented in this paper. The alloys were obtained with different concentrations of Co (15 and 50% of Co). The increase of current density with Ni-Co catalyst is approximately 0.1 mA/cm2. So, a fundamental possibility wastewater treatment using the Ni-Co alloy as catalyst for microbial fuel cells was presented.
PL
Jednym z ograniczeń w zastosowaniu mikrobiologicznych ogniw paliwowych jest niska gęstość prądu. Istnieje jednak możliwość podwyższenia tej wartości wykorzystując innego rodzaju katalizator elektrody paliwowej. Praca przedstawia możliwość oczyszczania ścieków za pomocą mikrobiologicznego ogniwa paliwowego z wykorzystaniem stopu Ni-Co jako katalizatora elektrody paliwowej. Do badań wykorzystano stopy Ni-Co o różnej koncentracji kobaltu (15 i 50%). Wykorzystując analizowany katalizator uzyskano wzrost gęstości prądu rzędu 0,1 mA/cm2. Wykazano więc możliwość wykorzystania stopu Ni-Co jako katalizatora mikrobiologicznego ogniwa paliwowego.
Rocznik
Tom
Strony
131--145
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Opole University, Opole, Poland
  • Opole University, Opole, Poland
Bibliografia
  • 1. Armour M-A., Hazarodous laboratory chemicals disposal guide, CRC Press, 2003.
  • 2. Asazawa K., Yamada K., Tanaka H., Oka A., Taniguchi M., Kobayashi T., A Platinum-Free Zero-Carbon-Emission Easy Fuelling Direct Hydrazine Fuel Cell for Vehicles, Angewandte Chemie, 119 (42) (2007) 8170-8173.
  • 3. Berk R.S., Canfield J.H., Bioelectrochemical energy conversion, Applied and Environmental Microbiology, 12 (1964) 10-12.
  • 4. Bockris J.O’M., Reddy A.K.N., Modern Electrochemistry, Kulwer Academic/Plenum Publishers, New York, 2000.
  • 5. Bond D. R., Lovley D. R., Electricity production by Geobacter sulfurreducens attached to electrodes, Applied and Environmental Microbiology, 69 (2003) 1548-1555.
  • 6. Chaudhuri S.K., Lovley D.R., Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nature Biotechnology, 21 (2003) 1229-1232.
  • 7. Cohen B., The bacterial culture as an electrical half-cell, Journal of Bacteriology, 21 (1931) 18-19.
  • 8. Davis J.B., Yarbrough H.F., Preliminary experiments on a microbial fuel cell, Science, 137 (1962) 615-616.
  • 9. Grady C.P.L., Daigger G.T., Love N.G., Filipe C.D.M., Biological Wastewater Treatment: Third Edition, IWA Publishing (Co-Published with CRC Press), 2011.
  • 10. Hamnett A., Mechanism and electrocatalysis in the direct methanol fuel cell, Catalysis Today, 38 (4) (1997) 445-457.
  • 11. Jadhav G.S., Ghangrekar M.M., Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration, Bioresource Technology, 100 (2) 2009) 717-723.
  • 12. Kim H.J., Park H.S., Hyun M.S., Chang I.S., Kim M., Kim B.H., A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefacians, Enzyme and Microbial Technology, 30 (2002) 145-152.
  • 13. Kutera J., Use of wastewater from yeast factory, Scientific Papers of the Agricultural University of Wroclaw, 1996.
  • 14. Liu H., Grot S., Logan B.E., Electrochemically Assisted Microbial Production of Hydrogen from Acetate, Environmental Science & Technology, 39 (11) (2005) 4317-4320.
  • 15. Liu H., Ramnarayanan R., Logan B.E., Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environmental Science & Technology, 38 (2004) 2281-2285.
  • 16. Liu Y., Harnisch F., Fricke K., Sietmann R., Schröder U., Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure, Biosensors and Bioelectronics, 24 (1) (2008) 1006-1011.
  • 17. Logan B.E., Microbial fuel cell, Wiley & Sons (2008).
  • 18. Logan B.E., Hamelers B., Rozendal R., Schroder U., Keller J., Verstraete W., Rabaey K., Microbial Fuel Cells:_ Methodology and Technology, Environmental Science & Technology, 40 (17) (2006) 5181-5192.
  • 19. Logan B.E., Regan J.M., Electricity - producing bacterial communities in microbial fuel cells, Trends Microbiol., 14 (2006) 512-518.
  • 20. Milewski J., Lewandowski J., Biofuels as fuels for high temperature fuel cells, Journal of Power Technologies, 93 (5) (2013) 347-353.
  • 21. Nowak A.J., Królik D., Kostecki J., Wastewater treatment in constructed wetlands, Civil and Environmental Engineering Reports, 11 (2013) 93-99.
  • 22. O’Hayre R., Cha S-W., Colella W., Prinz F.B., Fuel Cell Fundamentals, John Wiley & Sons, 2005.
  • 23. Park H.S., Kim B.H., Kim H.S., Kim H.J., Kim G.T., Kim M., Chang I.S., Park Y.K., Chang H.I., A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell, Anaerobe, 7 (2001) 297-306.
  • 24. Pham C.A., Jung S.J., Phung N.T., Lee J., Chang I.S., Kim B.H., Yi H., Chun J., A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell, FEMS Microbiology Letters, 223 (2003) 129-134.
  • 25. Płuciennik-Koropczuk E., Sadecka Z., Myszograj S., COD fractions in raw and mechanically treated wastewater, Civil and Environmental Engineering Reports, 11 (2013) 101-113.
  • 26. Rabaey K., Alterman P., Clauwaert P., De Schamphelaire L., Boon N., Verstraete W., Microbial fuel cells in relation to conventional anaerobic digestion technology, Engineering in Life Science, 6 (2006) 285-292.
  • 27. Rabaey K., Verstraete W., Microbial fuel cells: novel biotechnology for energy generation, Trends in Biotechnology, 23 (2005) 291-298.
  • 28. Rao J.R., Richter G.J., Von Sturm F., Weidlich E., The performance of glucose electrodes and the characteristics of different biofuel cell constructions, Bioelectrochem, Bioenerg., 3 (1976) 139-150.
  • 29. Ringeisen B.R., Henderson E., Wu P.K., Pietron J., Ray R., Little B., Biffinger J.C., Jones-Meehan J.M., High Power Density from a Miniature Microbial Fuel Cell Using Shewanella oneidensis DSP10, Environmental Science & Technology, 40 (2006) 2629-2634.
  • 30. Rolison D.R., Hagans P.L., Swider K.E., Long J.W., Role of Hydrous Ruthenium Oxide in Pt−Ru Direct Methanol Fuel Cell Anode Electrocatalysts:_ The Importance of Mixed Electron/Proton Conductivity, Langmuir, 15 (3) (1999) 774-779.
  • 31. Serov A., Kwak C., Direct hydrazine fuel cells, Applied Catalysis B: Environmental, 98 1-2 (2010) 1-9.
  • 32. Steigerwalt E.S., Deluga G.A., Cliffel D.E., Lukehart C.M., A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst, The Journal of Physical Chemistry B, 105 (34) (2001) 8097-8101.
  • 33. Springer T.E., Wilson M.S., Gottesfield S., Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells, Journal of The Electrochemical Society, 140 (1993) 3513-3526.
  • 34. Stolten D., Hydrogen and Fuel Cells. Fundamentals, Technologies and Applications, Wiley-VCH, 2010.
  • 35. Twigg M.V., Catalyst Handbook, Wolfe Publishing Ltd., 1989.
  • 36. Vetter K., Electrochemical kinetics, Springer-Verlag, Berlin-Gottingen-Heidelberg, (1961).
  • 37. Vielstich W., Fuel cell, Wiley Interscience, 1970.
  • 38. Wang X., Feng Y.J., Lee H., Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Science &Technology, 57 (2008) 1117-1121.
  • 39. Włodarczyk B., Włodarczyk P.P., Electricity production in microbial fuel cell with Cu-B alloy as catalyst of anode, QUAESTI 2015, Civil engineering (2015) 305-308. DOI 10.18638/quaesti.2015.3.1.211
  • 40. Włodarczyk B., Włodarczyk P.P., Porównanie skuteczności elektroutleniania w mikrobiologicznym ogniwie paliwowym z katalizatorem stalowym i napowietrzania w oczyszczaniu ścieków, Inżynieria i Ochrona Środowiska, 18 (2) (2015) 189-198.
  • 41. Włodarczyk P.P., Włodarczyk B., Powering fuel cells with crude oil, Journal of Power Technologies, 93 (5) (2013) 394-397.
  • 42. Włodarczyk, P.P., Włodarczyk, B., Analysis of the possibility of using stainless steel and copper boride alloy as catalyst for microbial fuel cell fuel electrode, Archiwum Gospodarki Odpadami i Ochrony Środowiska, 17 (1) (2015) 111-118.
  • 43. Włodarczyk, P.P., Włodarczyk, B., Possibility of using Ni-Co alloy as catalyst for oxygen electrode of fuel cell, Chinese Business Review, 14 (3) (2015) 159-167. DOI: 10.17265/1537-1506/2015.03.005
  • 44. Włodarczyk, P.P., Włodarczyk, B., Ni-Co alloy as catalyst for fuel electrode of hydrazine fuel cell, China-USA Business Review, 14 (5) (2015) 269-279. DOI: 10.17265/1537-1514/2015.05.005
  • 45. Zhao F., Sladea R.C.T., Varcoea J.R., Techniques for the study and development of microbial fuel cells: an electrochemical perspective, Chemical Society Reviews, 38 (2009) 1926-1939.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1185fdcc-709b-48f7-b483-1103381715ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.