Identyfikatory
Warianty tytułu
Adsorbenty do wychwytywania Cr(VI) z zanieczyszczonej wody: Część II Biomasa grzybów
Języki publikacji
Abstrakty
This study investigates the potential of Aspergillus niger fungal biomass, cultivated on three different media (Sabouraud Broth, Glucose-Potato Broth, and Malt Broth), for the biosorption of hexavalent chromium (Cr(VI)) from aqueous solutions. A series of batch experiments was conducted to evaluate the influence of operational parameters such as contact time, shaking speed, pH, biomass dosage, and initial Cr(VI) concentration. Optimal removal was observed at pH 2.5, shaking speed of 150 rpm, and a contact time of 60 minutes. Among the tested media, the biomass derived from Malt Broth (MB) exhibited the highest Cr(VI) adsorption capacity and removal efficiency. Adsorption isotherms were modeled using Langmuir and Freundlich equations. The Langmuir model provided a better fit for the experimental data, indicating monolayer adsorption. Results demonstrate that non-living fungal biomass can serve as a low-cost, effective, and sustainable biosorbent for chromium-contaminated water treatment.
W niniejszym badaniu zbadano potencjał biomasy grzyba Aspergillus niger, hodowanego na trzech różnych podłożach (Sabouraud Broth, Glucose-Potato Broth i Malt Broth), do biosorpcji sześciowartościowego chromu (Cr(VI)) z roztworów wodnych. Przeprowadzono serię eksperymentów wsadowych w celu oceny wpływu parametrów operacyjnych, takich jak czas kontaktu, prędkość wytrząsania, pH, dawka biomasy i początkowe stężenie Cr(VI). Optymalne usuwanie zaobserwowano przy pH 2,5, prędkości wytrząsania 150 obr./min i czasie kontaktu 60 minut. Spośród testowanych podłoży biomasa pochodząca z Malt Broth (MB) wykazała najwyższą pojemność adsorpcji Cr(VI) i wydajność usuwania. Izotermy adsorpcji modelowano przy użyciu równań Langmuira i Freundlicha. Model Langmuira zapewnił lepsze dopasowanie do danych eksperymentalnych, wskazując na adsorpcję monowarstwową. Wyniki badań dowodzą, że nieożywiona biomasa grzybów może być stosowana jako niedrogi, skuteczny i zrównoważony biosorbent w oczyszczaniu wody zanieczyszczonej chromem.
Czasopismo
Rocznik
Tom
Strony
77--85
Opis fizyczny
Bibliogr. 46 poz., tab., wykr.
Twórcy
autor
- Department of Environmental Engineering, Faculty of Civil Engineering and Resource Management, AGH University of Krakow, Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
- 1. Abdullah, N., Yusof, N., Lau, W. J., Jaafar, J., and Ismail, A. F. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Industrial Eng. Chem. 76, 17–38. ISSN 1226-086X. doi:10.1016/j.jiec.2019.03.029
- 2. Ahluwalia, S. S., & Goyal, D. (2010). Removal of Cr(VI) from aqueous solution by fungal biomass. Engineering in Life Sciences, 10(5), 480–485.
- 3. Aksu, Z., & Kutsal, T. (1990). A comparative study for biosorption characteristic of heavy metals ions with C. vulgaris. Environmental Technology, 11(10), 979–987.
- 4. Atès, N., and Uzal, N. (2018). Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration. Environ. Sci. Pollut. Res. Int. 25 (22), 22259–22272. doi:10.1007/s11356-018-2345-z
- 5. Ayele, A., & Godeto, Y. G. (2021). Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. Journal of Chemistry, 2021, Article ID 7694157. https://doi.org/10.1155/2021/7694157
- 6. Barrera-Díaz, C., Lugo-Lugo, V., & Bilyeu, B. (2012). A review of chemical, electrochemical and biological methods for hexavalent chromium reduction. Journal of Hazardous Materials, 223–224, 1–12. https://doi.org/10.1016/j.jhazmat.2012.04.054
- 7. Bashir, A., Malik, L. A., Ahad, S., Manzoor, T., Bhat, M. A., Dar, G. N., et al. (2019). Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett. 17, 729–754. doi:10.1007/s10311-018-00828-y
- 8. Bilal, M., Rasheed, T., Sosa-Hernández, J., Raza, A., Nabeel, F., & Iqbal, H. (2018). Biosorption: An interplay between marine algae and potentially toxic elements—A review. Marine Drugs, 16(2), 65. https://doi.org/10.3390/md16020065
- 9. Chojnacka, K. (2010). Biosorption and bioaccumulation – The prospects for practical applications. Environment International, 36(3), 299–307. https://doi.org/10.1016/j.envint.2009.12.001
- 10. Dhal, B., Thatoi, H. N., Das, N. N., & Pandey, B. D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and groundwater: A review. Journal of Hazardous Materials, 250–251, 272–291. https://doi.org/10.1016/j.jhazmat.2013.01.048
- 11. Donmez, G. C., Aksu, Z., Ozturk, A., & Kutsal, T. (1999). A comparative study on heavy metal biosorption characteristics of some algae. Process Biochemistry, 34(9), 885–892.
- 12. Elahi, A., Arooj, I., Bukhari, D. A., & Rehman, A. (2020). Successive use of microorganisms to remove chromium from wastewater. Applied Microbiology and Biotechnology, 104, 4931–4945. https://doi.org/10.1007/s00253-020-10533-y
- 13. Elahi, A., Arooj, I., Bukhari, D. A., & Rehman, A. (2020). Successive use of microorganisms to remove chromium from wastewater. Applied Microbiology and Biotechnology, 104, 1–15. https://doi.org/10.1007/s00253-020-10533-y
- 14. El-Sikaily, A., El Nemr, A., Khaled, A., & Abdelwehab, O. (2007). Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. Journal of Hazardous Materials, 148(1–2), 216–228. https://doi.org/10.1016/j.jhazmat.2007.02.052
- 15. García-Hernández, M. A., Villarreal-Chiu, J. F., & Garza-González, M. T. (2017). Metallophilic fungi research: An alternative for its use in the bioremediation of hexavalent chromium. International Journal of Environmental Science and Technology, 14(9), 2023–2038.
- 16. Gode F., Pehlivan E., Sorption of Cr(III) onto chelating b-DAEG–sporopollenin and CEP–sporopollenin resins. (2007) Bioresour. Technol., 904-911
- 17. GracePavithra, K., Jaikumar, V., Kumar, P. S., & SundarRajan, P. (2019). A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. Journal of Cleaner Production, 228, 580–593. https://doi.org/10.1016/j.jclepro.2019.04.226
- 18. Gupta, V. K., & Rastogi, A. (2009). Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. Journal of Hazardous Materials, 163(1), 396–402. https://doi.org/10.1016/j.jhazmat.2008.06.104
- 19. Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology, 2018. https://doi.org/10.1155/2018/2568038
- 20. Javanbakht, V., Alavi, S. A., & Zilouei, H. (2014). Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Science and Technology, 69(9), 1775–1787. https://doi.org/10.2166/wst.2014.102
- 21. Jobby, R., Jha, P., Yadav, A. K., & Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere, 207, 255–266.
- 22. Kapelula V.L., Luis P., (2024) Removal of heavy metals from wastewater using reverse osmosis. Front. Chem. Eng., Sec. Materials Process Engineering, Volume 6 doi.org/10.3389/fceng.2024.1334816
- 23. Kozlowski C.A., Walkowiak W., (2002) Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes, Water Res. 36, 4870–4876.
- 24. Majumder, R., Sheikh, L., Naskar, A., Vineeta, M., Mukherjee, M., & Tripathy, S. (2017). Depletion of Cr(VI) from aqueous solution by heat dried biomass of a newly isolated fungus Arthrinium malaysianum: A mechanistic approach. Scientific Reports, 7, 11254. https://doi.org/10.1038/s41598-017-10160-0
- 25. Majumder, R., Sheikh, L., Naskar, A., Vineeta, M., Mukherjee, M., & Tripathy, S. (2017). Depletion of Cr(VI) from aqueous solution by heat dried biomass of a newly isolated fungus Arthrinium malaysianum: A mechanistic approach. Scientific Reports, 7(1), 11254. https://doi.org/10.1038/s41598-017-11424-0
- 26. Matis K.A., Mavros P., (1991) Recovery of metals by ion flotation from dilute aqueous solutions, Sep. Purif. Meth. 20 1–48.
- 27. Mohammadi T., Moheb A., Sadrzadeh M., Razmi A., (2005) Modeling of metal ion removal from wastewater by electrodialysis, Sep. Purif. Technol. 41 (1) 73–82.
- 28. Ozaki H., Sharma K., Saktaywin W., (2002) Performance of an ultra-lowpressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters, Desalination 144, 287–294
- 29. Petruzzelli D., Passino R., Tiravanti G., (1995) Ion exchange process for chromium removal and recovery from tannery wastes, Ind. Eng. Chem. Res. 34 2612–2617.
- 30. Pollard, S. J. T., Fowler, G. D., Sollars, C. J., & Perry, R. (1992). Low-cost adsorbents for waste and wastewater treatment: A review. Science of the Total Environment, 116, 31–52
- 31. Qasem, N. A. A., Mohammed, R. H., & Lawal, D. (2021). Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water, 4, 36. https://doi.org/10.1038/s41545-021-00127-0
- 32. Rengaraj S., Yeon K.-H., Moon S.-H. (2001) Removal of chromium from water and wastewater by ion exchange resins, J. Hazard. Mater. 87 (1–3) 273–287.
- 33. Rezaei, H. (2016). Biosorption of chromium by using Spirulina sp. Arabian Journal of Chemistry, 9(6), 846–853.
- 34. Roundhill D.M., Koch H.F., (2002) Methods and techniques for the selective extraction and recovery of oxoanions, Chem. Soc. Rev. 31 60–67.
- 35. Saleh, T. A., Mustaqeem, M., and Khaled, M. (2022). Water treatment technologies in removing heavy metal ions from wastewater: a review. Environ. Nanotechnol. Monit. Manag. 17, 100617. ISSN 2215-1532. doi:10.1016/j.enmm.2021.100617
- 36. Saranraj, P., & Sujitha, D. (2013). Microbial bioremediation of chromium in tannery effluent: A review. International Journal of Microbiological Research, 4(3), 305–320.
- 37. Şenol, Z. M., Gül, Ü. D., Gurbanov, R., & Şimşek, S. (2021). Optimization of the removal of lead ions by fungi: Explanation of the mycosorption mechanism. Journal of Environmental Chemical Engineering, 9(1), 104760. https:// doi.org/10.1016/j.jece.2020.104760:contentReference[oaicite:0]{index=0}.
- 38. Shaalan H., Sorour M., Tewfik S., (2001) Simulation and optimization of a membrane system for chromium recovery from tanning wastes, Desalination 14 315–324.
- 39. Singh, M., & Verghese, S. P. (2016). Conventional and innovative techniques for removal of heavy metals from electroplating industry wastewater. International Journal of Engineering Sciences & Research Technology, 5(10), 150–158.
- 40. Srivastava, S., & Thakur, I. S. (2006). Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent. Bioresource Technology, 97(10), 1167–1173. https://doi.org/10.1016/j.biortech.2005.05.009
- 41. Sudha Bai, R., & Abraham, T. E. (2002). Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Research, 36(5), 1224–1236.
- 42. Tiravanti G., Petruzzelli D., Passino R. (1997), Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery. Water Sci. Technol. 36 (1997) 197–207.
- 43. Wang Y., Peng C., Padilla-Ortega E., Robledo-Cabrera A., López-Valdivieso A. (2020). Cr(VI) adsorption on activated carbon: Mechanisms, modeling and limitations in water treatment. Journal of Environmental Chemical Engineering Volume 8, Issue 4
- 44. Wang, J., Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002
- 45. WHO. (2020). Chromium in drinking-water: Background document for development of WHO guidelines for drinking-water quality. World Health Organization. https://www.who.int/publications/i/item/WHO-HEP-ECHWSH-2020.6
- 46. Yang, J., Yu, M., & Chen, W. (2015). Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: kinetics, equilibrium and thermodynamics. Journal of Industrial and Engineering Chemistry, 21, 414–422. https://doi.org/10.1016/j.jiec.2014.03.040
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1179086c-0d53-4ea8-a0b4-6b0a3af144f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.