PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objective: Positron emission tomography (PET) is a widely used medical imaging technique that allows for non-invasive imaging of metabolic processes. However, traditional PET scanners rely on costly inorganic scintillators that limit their accessibility, especially in light of emerging long axial field-of-view devices. The modular J-PET scanner, an innovative alternative, uses 50-cm-long plastic scintillator strips, offering a cost-effective and modular solution. In this study we develop and assess the PET data correction techniques required for quantitative image reconstruction. Methods: We present methods for attenuation correction, random coincidence correction using the delayed time window (DTW) technique and scatter correction based on Monte Carlo simulations. Phantom studies using the NEMA IQ phantom were performed to qualitatively evaluate these corrections. Results: The results demonstrate that our implemented corrections for attenuation and random and scattered coincidences successfully improve the uniformity of tracer distribution in homogenous volumes and significantly reduce undesired activity in cold regions. Despite limitations in sensitivity and axial resolution, the applied correction techniques effectively enhance image quality, providing promising results for future applications. Conclusions: These findings highlight the potential of the modular J-PET system to offer affordable PET imaging and to pave the way for a total-body PET scanner based on plastic scintillators. Future work will focus on quantitative validation and the implementation of these corrections for human subject imaging.
Rocznik
Strony
101--110
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków; Łojasiewicza str. 11, 30-348 Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Department of Radiology, University of California Davis, Sacramento, California, United States
  • Department of Biomedical Engineering, University of California Davis, Davis, California, United States
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Department of Radiology, University of California Davis, Sacramento, California, United States
  • Department of Biomedical Engineering, University of California Davis, Davis, California, United States
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • INFN, Laboratori Nazionali di Frascati, Frascati, Italy
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
  • Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Cracow University of Technology, Kraków, Poland
  • Cracow University of Technology, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
  • Department of Radiology, University of California Davis, Sacramento, California, United States
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
Bibliografia
  • 1. Alavi A, Werner TJ, Stępień EŁ, Moskal P. Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. Bio-Algorithms and Med-Systems. 2021 Dec 1;17(4):203-12. doi: https://doi.org/10.1515/bams-2021-0186.
  • 2. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Physics. 2020 May 25;7(1):1-33. doi: https://doi.org/10.1186/ s40658-020-00290-2.
  • 3. Moskal P, Stępień EŁ. Prospects and Clinical Perspectives of TotalBody PET Imaging using Plastic Scintillators. PET Clinics. 2020 Jul 29;15(4):439–52. doi: https://doi.org/10.1016/j.cpet.2020.06.009.
  • 4. Karakatsanis NA, Nehmeh MH, Conti M, Bal G, González AJ, Nehmeh SA. Physical performance of adaptive axial FOV PET scanners with a sparse detector block rings or a checkerboard configuration. Phys. Med. Biol. [Internet]. 2022 Apr 26;67(10):105010. doi: https://doi.org/10.1088/1361-6560/ac6aa1.
  • 5. Zhang Y, Wong WH. System Design Studies for a Low-cost High-resolution BGO PET with 1-meter Axial Field of View. J. Nucl. Med [Internet]. 2017;58(Suppl 1):221. Available from: https://jnm.snmjournals.org/content/58/supplement_1/221.
  • 6. Vandenberghe S, Karakatsanis NA, Akl MA, Maebe J, Surti S, Dierckx RA, et al. The potential of a medium-cost long axial FOV PET system for nuclear medicine departments. EJNMMI. 2022 Sep 30;50(3):652-60. doi: https://doi.org/10.1007/s00259-022-05981-9.
  • 7. Moskal P, Baran J, Bass S, Choiński J, Chug N, Curceanu C, et al. Positronium image of the human brain in vivo. Sci Adv. 2024 Sep 13;10(37). doi: https://doi.org/10.1126/sciadv.adp2840.
  • 8. Moskal P, Niedźwiecki Sz, Bednarski T, Czerwiński E, Kapłon Ł, Kubicz E, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl. Instrum. Methods Phys. Res. A. 2014 Aug 10;764:317-21. doi: https://doi.org/10.1016/j.nima.2014.07.052.
  • 9. Nelms AT. Graphs of the Compton Energy-Angle Relationship and the Klein-Nishina Formula from 10 KeV to 500 MeV. Phys. Today. 1954;7:18.
  • 10. Pałka M, Strzempek P, Korcyl G, Bednarski T, Niedźwiecki Sz, Białas P, et al. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement. J. Instrum. 2017 Aug 1;12(08):P08001. doi: https://doi.org/10.1088/1748-0221/12/08/p08001.
  • 11. Korcyl G, Hiesmayr BC, Jasinska B, Kacprzak K, Kajetanowicz M, Kisielewska D, et al. Evaluation of Single-Chip, Real-Time tomographic data processing on FPGA SOC devices. IEEE Trans Med Imaging. 2018 May 17;37(11):2526-35. doi: https://doi.org/10.1109/tmi.2018.2837741.
  • 12. Ardebili FT, Niedźwiecki S, Moskal P. Evaluation of Modular J-PET sensitivity. Bio-Algorithms and Med-Systems. 2023 Dec 31;19(1):132-8. doi: https://doi.org/10.5604/01.3001.0054.1973.
  • 13. Ardebili FT. Evaluation of the NEMA characteristics for the Modular J-PET scanner [thesis]. Krakow: Jagiellonian University; 2024.
  • 14. Ardebili FT, Moskal P. Assessing the Spatial Resolution of the Modular J-PET Scanner using the Maximum-Likelihood Expectation-Maximization (MLEM) algorithm. Bio-Algorithms and Med-Systems. 2024 Nov 21;20(Special Issue):1-9. doi: https://doi.org/10.5604/01.3001.0054.8095.
  • 15. Hoffman EJ, Huang SC, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography. J Comput Assist Tomogr. 1981 Jun 1;5(3):391-400. doi: https://doi.org/10.1097/00004728-198106000-00015.
  • 16. Knoll GF. Radiation detection and Measurement. New York: Wiley; 1955.
  • 17. Evans RD. The Atomic Nucleus. New York: McGraw Hill Book Co; 1955.
  • 18. Brasse D, Kinahan PE, Lartizien C, Comtat C, Casey M, Michel C. Correction methods for random coincidences in fully 3D Whole-Body PET: Impact on data and image quality. J Nucl Med. 2005 May;46(5):859-67.
  • 19. Oliver JF, Rafecas M. Modelling random coincidences in positron emission tomography by using singles and prompts: a comparison study. PLoS ONE. 2016 Sep 7;11(9):e0162096. doi: https://doi.org/10.1371/journal.pone.0162096.
  • 20. Ollinger JM. Model-based scatter correction for fully 3D PET. Phys. Med. Biol. 1996 Jan 1;41(1):153-76. doi: https://doi.org/10.1088/0031-9155/41/1/012.
  • 21. Levin CS, Dahlbom M, Hoffman EJ. A Monte Carlo correction for the effect of Compton scattering in 3-D PET brain imaging. IEEE Trans. Nucl. Sci. 1995 Aug 1;42(4):1181-5. doi: https://doi.org/10.1109/23.467880.
  • 22. Zhang X, Zhou J, Cherry SR, Badawi RD, Qi J. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner. Phys. Med. Biol. 2017 Feb 27;62(6):2465-85. doi: https://doi.org/10.1088/1361-6560/aa5e46.
  • 23. Bayerlein R, Spencer BA, Leung EK, Omidvari N, Abdelhafez YG, Wang Q, et al. Development of a Monte Carlo-based scatter correction method for total-body PET using the uEXPLORER PET/CT scanner. Phys. Med. Biol. 2024 Jan 24;69(4):045033. doi: https://doi.org/10.1088/1361- 6560/ad2230.
  • 24. Carney JPJ, Townsend DW, Rappoport V, Bendriem B. Method for transforming CT images for attenuation correction in PET/CT imaging. Med. Phys. 2006 Mar 21;33(4):976-83. doi: https://doi. org/10.1118/1.2174132.
  • 25. Merlin T, Stute S, Benoit D, Bert J, Carlier T, Comtat C, et al. CASToR: a generic data organization and processing code framework for multi- -modal and multi-dimensional tomographic reconstruction. Phys. Med. Biol. 2018 Aug 16;63(18):185005. doi: https://doi.org/10.1088/1361-6560/aadac1.
  • 26. Siddon RL. Fast calculation of the exact radiological path for a three-dimensional CT array. Med. Phys. 1985 Mar 1;12(2):252-5. doi: https://doi.org/10.1118/1.595715.
  • 27. Badawi RD, Marsden PK. Developments in component-based normalization for 3D PET. Phys. Med. Biol. 1999 Jan 1;44(2):571-94. doi: https://doi.org/10.1088/0031-9155/44/2/020.
  • 28. Pepin A, Stute S, Jan S, Comtat C. Normalization of Monte Carlo PET data using GATE. IEEE Nucl Sci Symp Conf Rec. 2011 Oct 1;4196-200. doi: https://doi.org/10.1109/nssmic.2011.6153804.
  • 29. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner - an economic total-body PET from plastic scintillators. Phys. Med. Biol. 2021 Jul 21;66(17):175015. doi: https://doi.org/10.1088/1361-6560/ac16bd.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11748e13-bd12-44db-b1e1-0fb0de54f043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.