PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Space-time quantification of aboveground net primary productivity service supply capacity in high Andean bofedales using remote sensors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aboveground net primary productivity (ANPP) of bofedales is one of the most important indicators for the provision of ecosystem services in the high Andean areas. In the case of bofedales, the evaluation of the ANPP supply capacity as a service on a spatial and temporal scale through remote sensing has been little addressed. The capacity, intra and interannual, to provide the ANPP of the high Andean wetlands was quantified at a spatial and temporal level through remote sensing. The normalized difference vegetation index (NDVI) of the MODIS sensor was used according to the Monteith model (1972), product of the incident photosynthetically active radiation, fraction of the absorbed radiation, and the efficiency of using the radiation of the calibrated vegetation with dry matter sampling in the field. Results show an ANPP prediction R 2 of 0.52 (p < 0.05), with no significant spatial difference between field samples. When applying the model, the intra-annual temporary ANPP supply capacity presents a maximum average of 160.54 kg DM·ha -1·month -1 in the rainy season (December-May) and a maximum average of 81.17 kg DM·ha -1·month in the dry season (June-October). In 2003-2020, the interannual temporary capacity presented values of 1100-1700 kg DM·ha -1·year -1. This makes it possible not to affect the sustainability of the wetlands and prevent their depletion and degradation. Understanding the ANPP supply capacity of bofedales can favour the efficient use of the resource and indirectly benefit its conservation.
Wydawca
Rocznik
Tom
Strony
172--181
Opis fizyczny
Bibliogr. 50 poz., mapy, rys., tab., wykr.
Twórcy
autor
  • Programa Académico de Ingeniería Ambiental, Universidad de Huánuco, Jr. Hermilio Valdizán N° 871, Huánuco, Peru
  • Universidad Nacional del Centro del Perú, Facultad de Zootecnia, Huancayo, Peru
  • Universidad Nacional del Centro del Perú, Centro de Investigación de Medicina en Altura y Medio Ambiente, Facultad de Medicina Humana, Huancayo, Peru
  • Universidad Nacional del Centro del Perú, Facultad de Zootecnia, Huancayo, Peru
  • Universidad Nacional del Centro del Perú, Centro de Investigación Huancayo, Peru
  • Universidad Nacional del Centro del Perú, Facultad de Zootecnia, Huancayo, Peru
  • Universidad Nacional Agraria La Molina, Laboratorio de Ecología y Utilización de Pastizales, Lima, Peru
Bibliografia
  • ANDERSON T.G., CHRISTIE D.A., CHÁVEZ R.O., OLEA M., ANCHUKAITIS K.J. 2021. Spatiotemporal peatland productivity and climate relationships across the Western South American Altiplano. Journal of Geophysical Research: Biogeosciences. Vol. 126(6), e2020JG005994. DOI 10.1029/2020JG005994.
  • BAEZA S., LEZAMA F., PIÑEIRO G., ALTESOR A., PARUELO J.M. 2010. Spatial variability of above-ground net primary production in Uruguay- an grasslands: A remote sensing approach. Applied Vegetation Science. Vol. 13(1) p. 72–85. DOI 10.1111/j.1654-109X.2009.01051.x.
  • BAEZA S., PARUELO J., AYALA W. 2011. Eficiencia en el uso de la radiación y productividad primaria en recursos forrajeros del este de Uruguay [Efficiency in the use of radiation and primary productivity on forage resources in Eastern Uruguay] [online]. Agrociencia Uruguay. Vol. 15(2) p. 48–59. [Access 19.06.2022]. Available at: http://www.scielo.edu.uy/scielo.php?script=sci_art-text&pid=S2301-15482011000200006&lng=pt&tlng=es
  • BAIKER J.R. 2020. Insights into the eco-hydrology of (tropical) high-Andean wetland ecosystems (bofedales) and its importance in the context of “water sowing & harvesting” interventions for adaptation to the adverse effects of global (climate) change: A systematic review. In: AGU Fall Meeting Abstracts. Abstract # H181-03. Washington. American Geophysical Union.
  • BALDASSINI P., VOLANTE J.N., CALIFANO L.M., PARUELO J.M. 2012. Caracterización regional de la estructura y de la productividad de la vegetación de la Puna mediante el uso de imágenes MODIS [Regional characterization of the structure and productivity of the vegetation of the Puna using MODIS images]. Ecologia Austral. Vol. 22(1) p. 22–32.
  • BUONO G., OESTERHELD M., NAKAMATSU V., PARUELO J.M. 2010. Spatial and temporal variation of primary production of Patagonian wet meadows. Journal of Arid Environments. Vol. 74(10) p. 1257–1261. DOI 10.1016/j.jaridenv.2010.05.026.
  • BURKHARD B., KROLL F., MÜLLER F., WINDHORST W. 2009. Landscapes’ capacities to provide ecosystem services – A concept for land-cover based assessments. Landscape Online. Vol. 15(1) p. 1–22. DOI 10.3097/LO.200915.
  • BUTTOLPH L.P., COPPOCK D.L. 2004. Influence of deferred grazing on vegetation dynamics and livestock productivity in an Andean pastoral system. Journal of Applied Ecology. Vol. 41(4) p. 664–674.
  • CANO D., HALLER A. 2018. Los servicios ecosistémicos hidrológicos: entre la urbanización y el cambio climático. Percepción campesina y experta en la subcuenca del río Shullcas, Perú [Hydrologic ecosystem services: Between urbanization and climate change. Small- holder and expert perception in the Shullcas river subbasin, Peru]. Espacio y Desarrollo. Vol. 32(31) p. 7–32. DOI 10.18800/espacioydesarrollo.201801.001.
  • CARIDE C., PIÑEIRO G., PARUELO J.M. 2012. How does agricultural management modify ecosystem services in the Argentine Pampas? The effects on soil C dynamics. Agriculture, Ecosystems and Environment. Vol. 154 p. 23–33. DOI 10.1016/j.agee.2011.05.031.
  • CARO C., SÁNCHEZ E., QUINTEROS Z., CASTAÑEDA L. 2014. Respuesta de los pastizales Altoandinos a la perturbación generada por extracción mediante la actividad de “Champeo” en los terrenos de la comunidad campesina Villa De Junín, Perú [Andean grasslands response after disturbance by an extraction activity called “Champeo” in the fields of the rural community of Villa Junín, Peru]. Ecología Aplicada. Vol. 13(1–2), 85. DOI 10.21704/rea.v13i1-2.459.
  • CASTELLARO G., GAJARDO C., PARRAGUEZ V., ROJAS R., RAGGI L. 1998. Productividad de un rebaño de camélidos sudamericanos domésticos en un sector de la provincia de Parinacota, Chile: I. Variación estacional de la composición botánica, disponibilidad de materia seca, valor pastoral y valor nutritivo de los bofedales [Productivity of a herd of domestic South American camelids in a sector of the province of Parinacota, Chile: I. Seasonal variation of the botanical composition, availability of dry matter, pastoral value and nutritional value of bofedales]. Agricultura Técnica (Chile). Vol. 58 p. 191–204.
  • CHÁVEZ R.O., CHRISTIE D.A., OLEA M., ANDERSON T.G. 2019. A multiscale productivity assessment of high Andean peatlands across the Chilean Altiplano using 31 years of Landsat imagery. Remote Sensing. Vol. 11(24), 2955. DOI 10.3390/rs11242955.
  • CHIMNER R.A., BOONE R., BOURGEAU-CHAVEZ L.L., FUENTEALBA B.D., GILBERT J., ÑAUPARI J.A., ..., YOUNG K.R. 2020. Andes, bofedales, and the communities of Huascarán National Park, Peru. The Society of Wetland Scientists Bulletin. Vol. 37 p. 246–254.
  • CHIMNER R.A., BOURGEAU-CHAVEZ L., GRELIK S., HRIBLJAN J.A., CLARKE A.M.P., POLK M.H., LILLESKOV E.A., FUENTEALBA B. 2019. Mapping mountain peatlands and wet meadows using multi-date, multi-sensor remote sensing in the Cordillera Blanca, Peru. Wetlands. Vol. 39(5) p. 1057–1067. DOI 10.1007/s13157-019-01134-1.
  • COCHI-MACHACA N., CONDORI B., ROJAS PARDO A., ANTHELME F., MENESES R.I., WEEDA C.E., PEROTTO-BALDIVIESO H.L. 2018. Effects of grazing pressure on plant species composition and water presence on bofedales in the Andes mountain range of Bolivia. Mires and Peat. Vol. 21, 15 p. 1–15. DOI 10.19189/MaP.2017.OMB.303.
  • COSTANZA R., FISHER B., MULDER K., LIU S., CHRISTOPHER T. 2007. Biodiversity and ecosystem services: A multi-scale empirical study of the relationship between species richness and net primary production. Ecological Economics. Vol. 61(2–3) p. 478–491. DOI 10.1016/j.ecolecon.2006.03.021.
  • DURANTE M., PIÑEIRO G., IRISARRI J.G.N., OESTERHELD M. 2017. Primary production of lowland natural grasslands and upland sown pastures across a narrow climatic gradient. Ecosystems. Vol. 20 (3) p. 543–552. DOI 10.1007/s10021-016-0039-2.
  • FACCIO C. 2010. Evaluación de la variación espacio temporal de la producción de biomasa en humedales mediante el uso de sensores remotos: Santa Teresa-Rocha-Uruguay [Evaluation of the spatio-temporal variation of biomass production in wetlands through the use of remote sensors: Santa Teresa-Rocha-Uruguay] [online]. BSc Thesis. Montevideo. Universidad de la República pp. 78. [Access 29.06.2022]. Available at: https://www.colibri.udelar.edu.uy/jspui/bitstream/20.500.12008/1623/1/uy24-14571.pdf
  • FRANCO VIDAL L., DELGADO J., ANDRADE G.I. 2013. Factores de la vulnerabilidad de los humedales altoandinos de Colombia al cambio climático global [Vulnerability factors to global climate change in the high Andean Colombian wetlands]. Cuadernos de Geografía: Revista Colombiana de Geografía. Vol. 22(2) p. 69–85. DOI 10.15446/rcdg.v22n2.37018.
  • GRIGERA G., OESTERHELD M., PACÍN F. 2007. Monitoring forage production for farmers’ decision making. Agricultural Systems. Vol. 94(3) p. 637–648. DOI 10.1016/j.agsy.2007.01.001.
  • GUIDO A., VARELA R.D., BALDASSINI P., PARUELO J. 2014. Spatial and temporal variability in aboveground net primary production of Uruguayan grasslands. Rangeland Ecology and Management. Vol. 67(1) p. 30–38. DOI 10.2111/REM-D-12-00125.1.
  • HEIN L., BAGSTAD K., EDENS B., OBST C., DE JONG R., LESSCHEN J.P. 2016. Defining ecosystem assets for natural capital accounting. PLoS ONE. Vol. 11(11) p. 1–25. DOI 10.1371/journal.pone.0164460.
  • IRISARRI J., GONZALO N., OESTERHELD M., PARUELO J.M., TEXEIRA M.A. 2012. Patterns and controls of above-ground net primary production in meadows of Patagonia. A remote sensing approach. Journal of Vegetation Science. Vol. 23(1) p. 114–126. DOI 10.1111/j.1654-1103.2011.01326.x.
  • IRISARRI J.G.N., OESTERHELD M., OYARZABAL M., PARUELO J. M., DURANTE M. 2013. Monitoring the ecosystem service of forage production. In: Earth observation of ecosystem services. Eds. D. Alcaraz-Segura, C.M. Di Bella, J.V. Straschnoyp. Boca Raton. CRC Press Taylor & Francis Group p. 87–103.
  • LEES K.J., QUAIFE T., ARTZ R.R.E., KHOMIK M., CLARK J.M. 2018. Potential for using remote sensing to estimate carbon fluxes across northern peatlands – A review. Science of the Total Environment. Vol. 615 p. 857–874. DOI 10.1016/j.scitotenv.2017.09.103.
  • LEES K.J., QUAIFE T., ARTZ R.R.E., KHOMIK M., SOTTOCORNOLA M., KIELY G., ..., CLARK J.M. 2019. A model of gross primary productivity based on satellite data suggests formerly afforested peatlands undergoing restoration regain full photosynthesis capacity after five to ten years. Journal of Environmental Management. Vol. 246 p. 594–604. DOI 10.1016/j.jenvman.2019.03.040.
  • LOZANO LAZO S.E. 2021. Valoración económica de los servicios ecosistémicos del Área de Conservación Regional Huaytapallana Huancayo, Junín; 2019 [Economic valuation of the ecosystem services of the Huaytapallana Regional Conservation Area Huancayo, Junín; 2019] [online]. BSc Thesis. Huancayo. Universidad Nacional del Centro del Perú. [Access 04.03.2022]. Available at: http://hdl.handle.net/20.500.12894/7694
  • LU D. 2006. The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing. Vol. 27(7) p. 1297–1328. DOI 10.1080/01431160500486732.
  • MALDONADO FONKÉN M.S. 2014. An introduction to the bofedales of the Peruvian high Andes. Mires and Peat. Vol. 15, 05 p. 1–13.
  • MARTÍN-LÓPEZ B., GONZÁLEZ J.A., DÍAZ S., CASTRO I., GARCÍA-LLORENTE M. 2007. Biodiversidad y bienestar humano: el papel de la diversidad funcional [Biodiversity and human well-being: the role of functional diversity]. Revista Ecosistemas. Vol. 16(3) p. 69–80.
  • MAZZARINO M., FINN J.T. 2016. An NDVI analysis of vegetation trends in an Andean watershed. Wetlands Ecology and Management. Vol. 24(6) p. 623–640. DOI 10.1007/s11273-016-9492-0.
  • MCCREE K.J. 1972. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agricultural Meteorology. Vol. 10(C) p. 443–453. DOI 10.1016/0002-1571(72)90045-3.
  • MONTEITH J.L. 1972. Solar radiation and productivity in tropical ecosystems. The Journal of Applied Ecology. Vol. 9(3), 747. DOI 10.2307/2401901.
  • MOREAU S., BOSSENO R., GU X.F., BARET F. 2003. Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR. Remote Sensing of Environment. Vol. 85(4) p. 516–529. DOI 10.1016/S0034-4257(03)00053-1.
  • OESTERHELD M., OYARZABAL M., PARUELO J.M. 2014. Aplicación de la teledetección y los sistemas de información geográfica al estudio y seguimiento de los sistemas ganaderos. En: Percepción remota y sistemas de información geográfica. Sus aplicaciones en Agronomía y Ciencias Ambientales [Application of remote sensing and geographic information systems to the study and monitoring of livestock systems. In: Remote Sensing and Geographic Information Systems. Its applications in Agronomy and Environmental Sciences]. Eds. J.M. Paruelo, C.M. Di Bella, M. Milkovic. Hemisferio Sur p. 283–301.
  • OYARZABAL M., OESTERHELD M., GRIGERA G. 2010. Cómo estimar la eficiencia del uso de la radiación mediante sensores remotos y cosecha de biomasa? En: Bases ecológicas y tecnológicas para el manejo de pastizales [How to estimate the efficiency of radiation use by remote sensing and biomass harvesting?]. Eds. A. Altesor, W. Ayala, J.M. Paruelo. Ser. FPTA No. 26. Montevideo. INIA p. 121–133.
  • PARUELO J. M., OESTERHELD M., DI BELLA C.M., ARZADUM M., LAFONTAINE J., CAHUEPÉ M., REBELLA C.M. 2000. Estimation of primary production of subhumid rangelands from remote sensing data. Applied Vegetation Science. Vol. 3(2) p. 189–195. DOI 10.2307/1478997.
  • PAUCA-TANCO A., RAMOS-MAMANI C., LUQUE-FERNÁNDEZ C.R., TALAVERA-DELGADO C., VILLASANTE-BENAVIDES J.F., QUISPE-TURPO J.P., VILLE-GAS-PAREDES L. 2020. Análisis espacio temporal y climático del humedal altoandino de Chalhuanca (Perú) durante el periodo 1986–2016 [Spatio temporal and climatic analysis of the high Andean wetland of Chalhuanca (Peru) during the period 1986–2016]. Revista de Teledetección. Vol. 55 p. 105–118. DOI 10.4995/raet.2020.13325.
  • PEZZANI F., BAEZA S., LEZAMA F. 2011. Efecto de los arbustos sobre el estrato herbáceo de pastizales. En: Bases ecológicas y tecnológicas para el manejo de pastizales [Effect of shrubs on the herbaceous layer of grasslands]. Eds. A. Altesor, W. Ayala, J.M. Paruelo. Ser. FPTA No. 26. Montevideo. INIA p. 195–207.
  • RUNNING S.W., THORNTON P.E., NEMANI R., GLASSY J.M. 2000. Global terrestrial gross and net primary productivity from the Earth Observing System. In: Methods in ecosystem science. Eds. O.E. Sala, R.B. Jackson, H.A. Mooney, R.W. Howarth. New York, NY. Springer p. 44–57. DOI 10.1007/978-1-4612-1224-9_4.
  • SALA O.E., AUSTIN A.T. 2000. Methods of estimating aboveground net primary productivity. In: Methods in ecosystem science. Eds. O.E. Sala, R.B. Jackson, H.A. Mooney, R.W. Howarth. New York, NY. Springer p. 31–43. DOI 10.1007/978-1-4612-1224-9_3.
  • SCHRÖTER M., BARTON D. N., REMME R.P., HEIN L. 2014. Accounting for capacity and flow of ecosystem services: A conceptual model and a case study for Telemark, Norway. Ecological Indicators. Vol. 36 p. 539–551. DOI 10.1016/j.ecolind.2013.09.018.
  • SIGUAYRO P.R. 2008. Evaluación agrostológica y capacidad receptiva estacional en bofedales de puna seca y húmeda del Altiplano de Puno [Agrostological evaluation and seasonal receptive capacity in wet and dry puna bogs of the highlands of Puna] [online]. Universidad Nacional del Altiplano. BSc Thesis. Puno. Universidad Nacional del Altiplano. [Access 11.05.2022]. Available at: http://siar.regionlima.gob.pe/documentos/tesis-evaluacion-agrostologica-capacidad-receptiva-estacional
  • TAO B., KERANG L., XUEMEI S., MINGKUI C. 2003. The temporal and spatial patterns of terrestrial net primary productivity in China. Journal of Geographical Sciences. Vol. 13(2) p. 163–171. DOI 10.1007/bf02837454.
  • VARGAS L., WILLEMEN L., HEIN L. 2019. Assessing the capacity of ecosystems to supply ecosystem services using remote sensing and an ecosystem accounting approach. Environmental Management. Vol. 63(1) p. 1–15. DOI 10.1007/s00267-018-1110-x.
  • VERÓN S.R., OESTERHELD M., PARUELO J.M. 2005. Production as a function of resource availability: Slopes and efficiencies are different. Journal of Vegetation Science. Vol. 16(3) p. 351–354. DOI 10.1111/j.1654-1103.2005.tb02373.x.
  • WASHINGTON-ALLEN R.A., RAMSEY R.D., WEST N.E., NORTON B.E. 2008. Quantification of the ecological resilience of drylands using digital remote sensing. Ecology and Society. Vol. 13(1), 33.
  • YARANGA R. 2020. High-Andean wetland of Peru: Floristic diversity, primary net aerial productivity, ecological condition, and carrying capacity. Scientia Agropecuaria. Vol. 11(2) p. 213–221. DOI 10.17268/SCI.AGROPECU.2020.02.08.
  • YARANGA R., CUSTODIO M., ORELLANA E. 2019. Composition and floral diversity in Andean grasslands in natural post-harvest restoration with Lepidium meyenii Walpers. Revista Ambiente e Agua. Vol. 14 p. 445–458. DOI 10.4136/ambi-agua.2351.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-11733909-e221-4df4-a904-96d5495e0e66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.